1. Catalog Description of the Course. [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ___ hours, laboratory ___ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

Biol 400. Molecular Biology and Molecular Genetics (4)

Three hours of lecture and three hours of laboratory per week.

Prerequisite: CHEM 314 & 315, 318 or 400; BIOL 300 or 302 with a grade of C or better.

Study of informational macromolecules and how they direct molecular processes in both eukaryotic and prokaryotic cells. Topics include structure, function and regulation of the genetic material at the molecular level, gene organization, structures and functions of DNA, RNA and proteins, gene transcription and expression, RNA processing, genomics and proteomics. A lab fee is required.

2. Mode of Instruction.

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>1</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

This is an elective course for Biology majors designed to introduce students to the latest advances in molecular biology and genetics. In the accompanying laboratory students will gain experience with current experimental technology in molecular biology.

Students who successfully complete this course should be able to:
1. Apply problem-solving skills to biological problems and issues.
2. Write up the results of an experimental study in a lab report.
3. Demonstrate their ability to reason both inductively and deductively with experimental information and data.
4. Explain the function, replication and evolution of genomes.
5. Select and apply experimental procedures to solve biological problems.

4. Is this a General Education Course YES NO

If Yes, indicate GE category:

<table>
<thead>
<tr>
<th>GE Category</th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (English Language, Communication, Critical Thinking)</td>
<td>gene and genome structure and function</td>
</tr>
<tr>
<td>B (Life Sciences)</td>
<td></td>
</tr>
<tr>
<td>C (Fine Arts, Literature, Languages & Cultures)</td>
<td></td>
</tr>
<tr>
<td>D (Social Perspectives)</td>
<td></td>
</tr>
<tr>
<td>E (Human Psychological and Physiological Perspectives)</td>
<td></td>
</tr>
</tbody>
</table>
replication
evolution and the methodology for genome mapping, analysis and comparison
Genome expression at the chromatin, gene, RNA and protein levels.

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]

7. List Faculty Qualified to Teach This Course.
 Biology faculty

8. Frequency.
 a. Projected semesters to be offered: Fall _____ Spring ___ X__ Summer _____

9. New Resources Required.
 a. Computer (data processing), audio visual, broadcasting needs, other equipment
 b. Library needs
 c. Facility/space needs
 Biology teaching laboratory with laboratory equipment and supplies.

10. Consultation.
 Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

 __________________________ __________________________
 Ching-Hua Wang 6 January 2003
 Proposer of Course Date