BIOLOGICAL AND PHYSICAL SCIENCES, MATH AND COMPUTER SCIENCE

1. **Catalog Description of the Course.** [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ___ hours, laboratory ___ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

BIOL 410. COMPUTER APPLICATIONS IN BIOMEDICAL FIELDS (3)

Three hours of lecture in the lab per week.
Prerequisites: BIOL 201 or consent of the instructor.
Current applications of computers and data processing technology to the understanding and solving of specific problems in biomedical fields.
Same as COMP 410

COMP 410. COMPUTER APPLICATIONS IN BIOMEDICAL FIELDS (3)

Three hours of lecture in the lab per week.
Prerequisites: BIOL 201 or consent of the instructor.
Current applications of computers and data processing technology to the understanding and solving of specific problems in biomedical fields.
Same as BIOL 410

2. **Mode of Instruction.**

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Units</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>

3. **Justification and Learning Objectives for the Course.** (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

The course is an elective course for Computer Science and Biology majors. Through this course, students will be able to –

- Use internet resources and publicaly available biological data bases
- Apply computational methods to image analysis in biological systems – from cells to organisms
- Understand the flow of biological information from DNA to protein
- Understand protein classification, structure and function
- Understand the principles of control theory, systems analysis, and model identification used in physiological regulation.
- Present their work in the form of electronic portfolios
- Analyze biological data using various computational software packages
- Apply statistical methods to analyze patterns of similarities in biological sequences
- Use simulation tools to understand central concepts
- Perform independent research and prepare comprehensive projects
- Work in teams

NEWCRSFR 9/30/02
• Solve problems in various contexts.
• Organize and express ideas clearly and convincingly in oral, electronic, visual, and written forms, and as an interactive computer simulation.

This course is not designed to satisfy the University Writing or Language requirements.

4. Is this a General Education Course NO
 If Yes, indicate GE category:
 A (English Language, Communication, Critical Thinking)
 B (Mathematics & Sciences)
 C (Fine Arts, Literature, Languages & Cultures)
 D (Social Perspectives)
 E (Human Psychological and Physiological Perspectives)

5. Course Content in Outline Form. [Be as brief as possible, but use as much space as necessary]
 1. Introduction to Biocomputing
 2. Data processing and image analysis of biological systems from cells (FACS) to whole body (CAT) scans
 3. Modeling and analysis of biological control systems
 4. Central Dogma
 5. Protein structure, function and classification
 6. DNA and protein data banks
 7. Protein visualization and modeling
 8. Biological sequence comparison
 9. BLAST theory and practice
 10. Patterns and probabilistic models, profiles
 11. Computational analysis and statistical methods for analysis of biological data
 12. Case studies, final projects

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]
 1) Biological Sequence Analysis : Probabilistic Models of Proteins and Nucleic Acids
 3) Developing Bioinformatics Computer Skills, by Cynthia Gibas, Per Jambeck O'Reilly & Associates;
 5) Computing with Cells and Atoms: An Introduction to Quantum, DNA and Membrane Computing, by C.S. Calude and
 6) Computing Supplement to Models in Biology, Mathematics, Statistics and Computing (Book With Disc)
 0471208116; (2001)
 (1999)

7. List Faculty Qualified to Teach This Course.
 Computer Science faculty with expertise in Biocomputing.

8. Frequency.
 a. Projected semesters to be offered: Fall ___X__ Spring _X____ Summer _____

NEWCRSFR 9/30/02
9. **New Resources Required.**

 a. Computer (data processing), audio visual, broadcasting needs, other equipment
 Use of existing computer lab.

 b. Library needs
 none

 c. Facility/space needs
 none

10. **Consultation.**
 Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

_________________________ Louise Lutze-Mann __________________________
Proposer of Course 1-7-03 Date
Approvals

Program Coordinator Date

GE Committee Chair Date
(If applicable)

Curriculum Committee Chair Date

Dean Date

Effective Semester: ____________________________
1. Course prefix, number, title, and units: COMP 410

2. Program Areas: COMPUTER SCIENCE

Recommend Approval

<table>
<thead>
<tr>
<th>Program Area/Unit</th>
<th>Program/Unit Coordinator</th>
<th>YES</th>
<th>NO (attach objections)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business & Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESRM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberal Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics & CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If needed