NEW COURSE PROPOSAL

PROGRAM AREA _________ **BIOLOGY**

1. **Catalog Description of the Course.** [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ___ hours, laboratory ___ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

BIOL 506. MOLECULAR EVOLUTION (4)

Three hours of lecture and three hours of laboratory per week.

Prerequisites: BIOL 400 or BIOL 401 or permission of instructor

This course will examine evolutionary change at the molecular level. Topics include: The driving forces behind the evolutionary process, the effects of the various molecular mechanisms on the structure of genes, proteins, and genomes, the methodology for dealing with molecular data from an evolutionary perspective and the logic of molecular hypothesis testing.

2. **Mode of Instruction.**

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>1</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **Justification and Learning Objectives for the Course.** (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

Molecular evolution is an elective course for graduate students in the Professional Master of Science Degree Program in Bioinformatics. Students who successfully complete this course will be able to:

- Describe how molecular data can be used to construct a phylogenetic tree
- Characterize the rates and causes of nucleotide substitutions
- Explain how a gene/protein family arises
- Explain the mechanisms which underlie evolution at the molecular level

4. **Is this a General Education Course**

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If Yes, indicate GE category:

- **A (English Language, Communication, Critical Thinking)**
- **B (Life Sciences)**
- **C (Fine Arts, Literature, Languages & Cultures)**
- **D (Social Perspectives)**
- **E (Human Psychological and Physiological Perspectives)**

5. **Course Content in Outline Form.** [Be as brief as possible, but use as much space as necessary]

I. Genes, Genetic Codes, and Mutation

- Nucleotide Sequences
- Genomes and DNA Replication
- Genes and Gene Structure
Proteins and Translation
Mutation

II. Dynamics of Genes in Populations
 Changes in Allele Frequencies
 Natural Selection
 Random Genetic Drift
 Effective Population Size
 Gene Substitution and Genetic Polymorphism
 Genetic Polymorphism
 The Driving Forces in Evolution

III. Evolutionary Change in Nucleotide Sequences
 Nucleotide Substitution in a DNA Sequence
 Number of Nucleotide Substitutions between Two DNA Sequences
 Number of Amino Acid Replacements between Two Proteins
 Alignment of Nucleotide and Amino Acid Sequences

IV. Rates and Patterns of Nucleotide Substitution
 Rates of Nucleotide Substitution and causes of variation in substitution rates
 Positive Selection
 Patterns of Substitution and Replacement
 Evaluation of the Molecular Clock Hypothesis
 Rates of Substitution in Organelle DNA

V. Molecular Phylogenetics
 The Use of Molecular Data in Phylogenetic Studies
 Terminology of Phylogenetic Trees
 Construction of Phylogenetic trees
 Problems Associated with Phylogenetic Reconstructions

VI. Gene Duplication and Exon Shuffling
 Gene Duplication
 Formation of Gene Families and the Acquisition of New Functions
 Dating Gene Duplications
 Gene Loss
 The Globin Superfamily of Genes
 Prevalence of Gene Duplication, Gene Loss, and Functional Divergence
 Exon Shuffling

VII. Evolution by Transposition
 Transposition and Retroposition
 Transposable Elements
 Retroelements and Retrosequences
 Genetic and Evolutionary Effects of Transposition
 Horizontal Gene Transfer

VIII. Genome Evolution
 Genome Size in Prokaryotes
 Genome Size in Eukaryotes
 Mechanisms for Global Increases in Genome Size
 The Repetitive Structure of the Eukaryotic Genome
 Mechanisms for Regional Increases in Genome Size
 Chromosomal Evolution
 Mechanisms for Changes in Gene Order and Gene Distribution among Chromosomes
 GC Content in Bacteria
 Compositional Organization of the Vertebrate Genome
Emergence of Nonuniversal Genetic Codes

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]

7. List Faculty Qualified to Teach This Course.
 Dr. Amy Denton

8. Frequency.
 a. Projected semesters to be offered: Fall _____ Spring ___X___ Summer _____

9. New Resources Required.
 a. Computer (data processing), audio visual, broadcasting needs, other equipment
 b. Library needs
 c. Facility/space needs
 Laboratories for this course will be conducted in the new Science building

10. Consultation.
 Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

 Nancy Mozingo ______________________ 31 October 2003 ____________________________
 Proposer of Course Date