CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS

NEW COURSE PROPOSAL

PROGRAM: BIOLOGICAL AND PHYSICAL SCIENCES

1. Catalog Description of the Course. Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ___ hours, laboratory ___ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.

BIOL 343. FORENSIC SCIENCE (3)
Two hours of lecture and three hours of lab per week.
A survey of the various chemical and biological techniques used in obtaining and evaluating criminal evidence. Topics include: chromatography; mass spectrometry (LC-MS, GC-MS); atomic absorption spectrometry; IR, UV, fluorescence, and X-ray spectroscopies; fiber comparisons; drug analysis; arson/explosive residue analysis; toxicological studies; blood typing; DNA analysis; population genetics; firearm identification; and fingerprint analysis. Lab fee required.
Same as CHEM 343. GenEd: B1, B2 and Interdisciplinary

CHEM 343. Forensic Science (3)
Two hours of lecture and three hours of lab per week.
A survey of the various chemical and biological techniques used in obtaining and evaluating criminal evidence. Topics include: chromatography; mass spectrometry (LC-MS, GC-MS); atomic absorption spectrometry; IR, UV, fluorescence, and X-ray spectroscopies; fiber comparisons; drug analysis; arson/explosive residue analysis; toxicological studies; blood typing; DNA analysis; population genetics; firearm identification; and fingerprint analysis. Lab fee required.
Same as BIOL 343. GenEd: B1, B2 and Interdisciplinary

2. Mode of Instruction.

<table>
<thead>
<tr>
<th>Units</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) /Use as much space as necessary/

Elective in Chemistry and GE: B1, B2 and Upper division Interdisciplinary

Students who successfully complete this course will be able to:
- Describe the scientific method and how it is used to approach scientific problems
- Explain the basic scientific principles that form the basis for forensic science analysis techniques, including chromatography, mass spectrometry, spectrophotometry, toxicology, and DNA analysis
- Perform experimental techniques used by Forensic Scientists
- Interpret experimental results obtained from crime scene analysis
- Integrate chemical and biological concepts as they relate to forensic science
- Explain the scientific principles behind and limitations of forensic science analysis techniques

4. Is this a General Education Course

YES

NO

NEWCRSFR 9/30/02
If Yes, indicate GE category:

<table>
<thead>
<tr>
<th>A (English Language, Communication, Critical Thinking)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B (Mathematics & Sciences)</td>
<td>X</td>
</tr>
<tr>
<td>C (Fine Arts, Literature, Languages & Cultures)</td>
<td></td>
</tr>
<tr>
<td>D (Social Perspectives)</td>
<td></td>
</tr>
<tr>
<td>E (Human Psychological and Physiological Perspectives)</td>
<td></td>
</tr>
</tbody>
</table>

5. Course Content in Outline Form. [Be as brief as possible, but use as much space as necessary]

An Introduction to Forensic Science
 Definition and Scope of Forensic Science
 Historical context of the development of Forensic Science
 Deductive and Inductive Reasoning
 Scientific Method

The Crime Scene
 Measurements and observations
 Collection of physical evidence
 Types of physical evidence

Chemical Analysis
 Gas and liquid chromatography
 Spectrophotometry
 Mass spectrometry
 Atomic absorption spectrophotometry

Physical Analysis
 Optical microscopy
 Scanning electron microscopy

Toxicology of Drugs and Alcohol
 Drug classifications and characteristics
 Physiological effects of drugs
 Drug and alcohol laws
 Identification of drugs
 Toxicology

Arson and Explosives
 Chemistry of fire
 Analysis of flammable residues
 Explosive classifications and characteristics

Serology
 Protein/enzyme structure and function
 Identification of body fluids

DNA Analysis
 Structure, function, and replication of DNA
 Heredity and DNA
 Basic probability and statistics
 DNA fingerprinting and population genetics

Fingerprints
 History of classification system for fingerprinting
 Digital imaging and methods of detecting fingerprints

Trace Evidence
 Hair and fibers
 Paint

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]

7. **List Faculty Qualified to Teach This Course.**

 Dr. Simone Aloisio, Dr. Philip Hampton, Dr. Louise Lutze-Mann, Dr. Ching-Hua Wang

8. **Frequency.**
 a. Projected semesters to be offered: Fall ☒ Spring ☒ Summer ☐

9. **New Resources Required.**
 None. Equipment available from chemistry and biology laboratories

10. **Consultation.**
 Attach consultation sheet from all program areas, Library, and others (if necessary)
 (See Attached Forms)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

 Philip Hampton ____________________________ 1/8/03 ____________________________
 Proposer of Course Date
<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Ching-Hua Wang</td>
<td></td>
</tr>
<tr>
<td>Prof. Louise Lutze-Mann</td>
<td></td>
</tr>
</tbody>
</table>