NEW COURSE PROPOSAL

PROGRAM: MULTIPLE PROGRAMS/ CHEMISTRY

1. Catalog Description of the Course. [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ___ hours, laboratory ___ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

CHEM 371. PHYSICAL CHEMISTRY I (3)
Three hours lecture per week.
Prerequisite: CHEM 122 with a grade of C or better, PHYS 101 or PHYS 201, and MATH 150.
This course is designed to introduce thermodynamics and kinetics. Areas covered will include the laws of thermodynamics, changes in state, chemical equilibrium, gas kinetic theory, rates of reactions, and experimental methods used to determine chemical reaction rates.

2. Mode of Instruction.

<table>
<thead>
<tr>
<th>Units</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

This course is required Chemistry majors, and may be taken by other science majors, who are interested in physical chemistry for their profession or graduate studies. This course will be an upper-division requirement for chemistry majors, or an elective for the minor in chemistry.

Students who successfully complete this course will be able to:
- Analyze, both qualitatively and quantitatively, how molecular shape, electronic structure, thermodynamics, kinetics, and intermolecular interactions are interrelated in Physical Chemistry.
- Calculate the properties of an ideal and a real gas.
- Relate work, heat and entropy to the laws that govern thermodynamics.
- Apply the laws of thermodynamics to chemical reactions.
- Explain phase change diagrams for pure substances and simple mixtures.
- Derive the laws that relate thermodynamics to chemical equilibrium.
- Determine the effect of changing surrounding conditions to chemical equilibrium.
- Describe different electrochemical reactions quantitatively.
- Apply the laws of thermodynamics and equilibrium to electrochemical reactions.
- Explain collision theory of kinetics.
- Determine rate laws for simple and complex chemical reactions.
- Describe ion transport and molecular diffusion
- Determine rate laws for simple surface reactions
- Identify experimental methods used to determine reaction rates

4. Is this a General Education Course YES NO

If Yes, indicate GE category:

NEWCRSFR 9/30/02
5. **Course Content in Outline Form.** *Be as brief as possible, but use as much space as necessary*

 Thermodynamics
 - Perfect and real gasses
 - Work and Heat
 - Conservation of Energy
 - Entropy
 - Gibbs Free Energy
 Changes of State
 - Phase diagrams for pure substances and simple mixtures
 - Thermodynamics of mixtures
 - The Phase Rule
 Chemical Reactions
 - Spontaneity
 - Le Chatlier’s Principle
 - Electrochemical reactions
 Kinetics
 - Collisions of gases
 - Ion transport and molecular diffusion
 - Rate Laws
 - Complex Reactions
 - Reaction dynamics
 - Kinetics at a surface

6. **References.** *Provide 3 - 5 references on which this course is based and/or support it.*

 McQuarrie, D.A.; Simon, J.D. *Physical Chemistry*, University Science Books, 1st Ed. 1997

7. **List Faculty Qualified to Teach This Course.**

 Dr. Simone Aloisio, Dr. Phil Hampton

8. **Frequency.**
 a. Projected semesters to be offered: Fall **X** Spring _____ Summer _____

9. **New Resources Required.**
 None.

10. **Consultation.**
 Attach consultation sheet from all program areas, Library, and others (if necessary)

11. **If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.**

 Simone Aloisio __________________________ 12-16-03 __________________________
 Proposer of Course Date