NEW COURSE PROPOSAL

PROGRAM: MULTIPLE PROGRAMS/ CHEMISTRY

1. Catalog Description of the Course. [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ___ hours, laboratory ___ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

CHEM 461. BIOCHEMISTRY II (4)
Three hours lecture and three hours laboratory per week.
Prerequisite: CHEM 305 (or concurrent enrollment), CHEM 460 with a grade of C or better or consent of instructor.
This course will focus on the biochemical reactions that occur in cells. Topics include biosynthesis of proteins, lipids and nucleic acids, photosynthesis, cellular metabolism, and gene expression. Lab fee required.

2. Mode of Instruction.

<table>
<thead>
<tr>
<th>Units</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

This course is a continuation of CHEM 460 and is a requirement for chemistry majors pursuing a biochemistry option. Additionally, all students interested in pursuing medical, veterinary, dental or pharmacology school, or graduate studies in biochemistry will find this course helpful for admission into a competitive program.

Students who successfully complete this course will be able to:
- Outline the development of the field of biochemistry from historical benchmarks to the most current examples of biotechnology’s impact on medicine and society.
- Describe how molecular shape, electronic structure, thermodynamics, kinetics, and intermolecular interactions affect the structure, properties, and reactions of biological molecules.
- Explain the overall schema of metabolic strategy, regulation and disease.
- Describe major biochemical pathways, including energy flow, anabolic and catabolic pathways.
- Explain the regulatory mechanisms of these pathways.
- Integrate their general knowledge of biomolecular structure, function and metabolism with important biological and medical questions, such as immune responses, carcinogenesis, and signal transduction.
- Interpret, discuss, and evaluate a primary literature article.

4. Is this a General Education Course

YES []
NO [X]

If Yes, indicate GE category:

NEWCRSF 9/30/02
5. Course Content in Outline Form. [Be as brief as possible, but use as much space as necessary]

\[\text{Introduction to Metabolism}\]
- Energy content of molecules and thermodynamics
- Oxidation-reduction reactions and electrochemistry
- Regulatory strategies in metabolism

\[\text{Glycolysis and Gluconeogenesis}\]
- Energy conversion
- Gluconeogenesis
- Regulation of glycolysis

\[\text{Citric Acid Cycle}\]
- Enzymes in the Citric Acid Cycle
- Regulation of the Citric Acid Cycle

\[\text{Electron-Transport and Oxidative Phosphorylation}\]
- Electron-transport
- Oxidative phosphorylation and regulation

\[\text{Photosynthesis}\]
- Light reactions and biosynthesis of ATP
- Dark reactions, the Calvin Cycle and the Pentose Phosphate Pathway

\[\text{Lipid Metabolism}\]
- Fatty acid synthesis and degradation
- Regulation of fatty acid synthesis and degradation
- Membrane lipid synthesis

\[\text{Amino and Nucleic Acid Metabolism}\]
- Protein degradation
- Synthesis and degradation of amino acids

\[\text{Nucleic Acid Metabolism}\]
- Purine biosynthesis and regulation
- Pyrimidine biosynthesis and regulation

\[\text{The control of gene expression}\]
- Structure of genes in pro- and eukaryotes
- Activation and repression of transcription
- Chromatin structure
- Post-transcriptional regulation

\[\text{Responding to stimuli}\]
- Olfaction and vision
- The immune response
- Molecular motors

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]

Berg, J.M.; Tymoczko, J.L.; Stryer, L. \textit{Biochemistry}, Freeman, 5th Ed., 2002
Stryer, L. \textit{Biochemistry}, Freeman, 4th Ed., 1995

7. List Faculty Qualified to Teach This Course.

Dr. Philip Hampton

8. Frequency.
 a. Projected semesters to be offered: Fall ___ Spring _X_ Summer _____

9. New Resources Required.
 None.
10. Consultation.
 Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

 Phil Hampton ___________________________ 12-16-03 ___________________________
 Proposer of Course Date

NEWCRSFR 9/30/02