PROPOSAL TO OFFER A NEW ACADEMIC PROGRAM/ MAJOR IN FALL 2004
(LONG FORM)

Proposed Name of Degree: Bachelor of Arts in Chemistry

Options/ Emphases in the Degree: Biochemistry Option

Faculty Proposing New Program: Philip D. Hampton, PhD; Simone Aloisio, PhD

Review and Approval:

1. Curriculum Committee Approval:
Curriculum Chair: __________________________ Date: __________

2. Academic Senate Approval:
Chair, Academic Senate: __________________________ Date: __________

3. Administration Approval:
President (or designee): __________________________ Date: __________

- 1 -
1. **Definition of the Proposed Degree Major Program**

1a. *Name of the campus submitting the request, the full and exact designation (degree terminology) for the proposed degree major program, and academic year of intended implementation.*

 Campus - California State University Channel Islands
 Degree - Bachelor of Arts in Chemistry
 Implementation – Fall 2004

1b. *Name of the department, departments, division or other unit of the campus that would offer the proposed degree major program. Identify the unit that will have primary responsibility.*

 Academic Affairs/Multiple Programs

1c. *Name, title, and rank of the individual(s) primarily responsible for drafting the proposed degree major program.*

 Philip D. Hampton, PhD
 Professor of Chemistry

 Simone Aloisio, PhD
 Assistant Professor of Chemistry

1d. **Objectives of the proposed degree major program.**

1. To provide students with a strong undergraduate educational preparation in Chemistry and Biochemistry that is founded on the “Big Ideas” in Chemistry.

2. To enhance students’ problem-solving, analytical, oral communication, and written communication skills across the Chemistry curriculum.

3. To encourage team problem-solving and collaboration

4. To develop students’ ability to read and understand primary literature

5. To provide students with hands-on exposure to laboratory research through internships and independent research.

6. To prepare students for further study in graduate or professional schools, or for employment in a variety of public and private organizations.
Big Ideas in Chemistry:

1. **Geometric Structure:** The three dimensional arrangement of atoms in a molecule results in a unique shape which can affect the properties, reactivity, and stability of a molecule, as well as its ability to interact with or bind to another molecule.

2. **Electronic Structure:** The energies and extent of filling of atomic orbitals and molecular orbitals in an atom or molecule affects the properties, reactivity and stability of an atom/molecule. Electronic structure includes the nature of bonds between atoms and the interaction between orbitals on neighboring or remote atoms.

3. **Forces between Molecules:** Interactions between groups in a molecule or between molecules can occur over a distance through dispersion forces, dipole-dipole interactions, hydrogen bonding, and crystal packing forces.

4. **Thermodynamics:** The stability of an atom/molecule influences its reactivity and determines whether an atom/molecule will react with another atom/molecule.

5. **Kinetics:** The rate at which one atom/molecule reacts with another atom/molecule is influenced greatly by the concentrations of the individual species undergoing the reaction, the rate of collisions between molecules, and by the energy needed for atoms/molecules to react individually or with one another.

6. **Reactions:** There are four basic ways that molecules react: (1) Electron-transfer (redox reactions); (2) Lone electron sharing (radical reactions); (3) Electron pair sharing (i.e., acid-base reactions, electrophilic/nucleophilic reactions); and (4) Concerted Reactions (i.e., pericyclic reactions).

The Great Ideas of Chemistry were adapted from the following references:

Student Outcomes:

Through this degree program students will be able to:

1. Explain the “Big Ideas” of Chemistry and discriminate when they can be applied to problems in Chemistry.
2. Evaluate and propose explanations for symbolic, microscopic, and macroscopic (real-life) representations of concepts including their relationship to the “Big Ideas” of Chemistry.
3. Formulate hypotheses and devise and perform experiments to test a hypothesis as individuals and in a team.
4. Explain key concepts in Chemistry effectively through oral and written communication.
5. Interpret, evaluate and criticize the chemical literature.

1e. Total number of units required for the major. List of all courses, by catalog number, title, and units of credit, to be specifically required for a major under the proposed degree program. Identify those new courses that are (1) needed to initiate the program and (2) needed during the first two years after implementation. Include proposed catalog descriptions of all new courses.

120 Semester units required for the major (both options).

BACHELOR OF ARTS IN CHEMISTRY

Lower Division Core Requirements (28 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
<td>(4 units)</td>
</tr>
<tr>
<td>CHEM 122</td>
<td>General Chemistry II</td>
<td>(4 units)</td>
</tr>
<tr>
<td>CHEM 250</td>
<td>Quantitative Analysis</td>
<td>(2 units)</td>
</tr>
<tr>
<td>CHEM 251</td>
<td>Quantitative Analysis Laboratory</td>
<td>(2 units)</td>
</tr>
<tr>
<td>MATH 150</td>
<td>Calculus I</td>
<td>(4 units)</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus II</td>
<td>(4 units)</td>
</tr>
<tr>
<td>PHYS 100</td>
<td>Introduction to Physics I</td>
<td>(4 units)</td>
</tr>
<tr>
<td>or PHYS 200</td>
<td>General Physics I</td>
<td>(4 units)</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Introduction to Physics II</td>
<td>(4 units)</td>
</tr>
<tr>
<td>or PHYS 201</td>
<td>General Physics II</td>
<td>(4 units)</td>
</tr>
</tbody>
</table>

Upper-Division Core Requirements (18 units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 305</td>
<td>Computer Applications in Chemistry</td>
<td>(1 unit)</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Organic Chemistry I</td>
<td>(3 units)</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>Organic Chemistry I Laboratory</td>
<td>(1 unit)</td>
</tr>
<tr>
<td>CHEM 314</td>
<td>Organic Chemistry II</td>
<td>(3 units)</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Organic Chemistry II Laboratory</td>
<td>(1 unit)</td>
</tr>
</tbody>
</table>
California State University
Channel Islands

CHEM 370 Physical Chemistry (3 units)
CHEM 371 Physical Chemistry Laboratory (1 unit)
CHEM 492 Internship/Service Learning
 or CHEM 494 Independent Research (1 unit)
CHEM 499 Capstone Project (1 unit)

ENGL 330 Writing in the Disciplines
 Or ENGL 483 Technical Visual Communication
 Or ENGL 484 Technical Writing for the Sciences (3 units)

Total Units in Chemistry Core: 46 units

Upper-Division Chemistry Electives (14 units)
A total of 14 units of electives including a minimum of two laboratory courses, no more than 2 units of Chemistry learning community courses (i.e., CHEM 313 and 316), and a maximum of three units of CHEM 341 or 346.

Total Units in the Bachelor of Arts in Chemistry 60 units

TOTAL UNITS FOR GRADUATION

I. Lower Division Core Required 28
II. Upper Division Core Required 18
III. Elective Courses in the Chemistry Major 14
V. Upper Division Required Interdisciplinary General Education 6-9
 • In Chemistry Major 0-3
 • Outside of Chemistry Major 6-9
VI. Other General Education (GE) 30
VII. Title V 6
VIII. University Electives 15-18

Total 120
Required Chemistry Major Courses Fulfilling GE Category Requirements

A-1 Oral Communication
No applicable course from the Chemistry Major

A-2 Writing Communication
No applicable course from the Chemistry Major

A-3 Critical Thinking
No applicable course from the Chemistry Major

B-1 Physical Sciences
CHEM 121 General Chemistry I OR
CHEM 122 General Chemistry II OR
PHYS 100 Introduction to Physics I OR
PHYS 200 General Physics I

B-2 Life Sciences
No applicable course from the Chemistry Major (non-Biochemistry Option)
Biochemistry Option:
BIOL 200 Principles of Organismal and Population Biology

B-3 Mathematics
MATH150 Calculus I

B-4 Computers and Information Technology
CHEM 305 Computer Applications in Chemistry

C-1 Fine Arts
No applicable course from the Chemistry Major

C-2 Literature
No applicable course from the Chemistry Major

C-3a Language
No applicable course from the Chemistry Major

C-3b Multicultural
No applicable course from the Chemistry Major

D Social Perspectives
No required course from the Chemistry Major
One course (three units) in this category and three units of Upper-Division General Education may be met with Chemistry Electives (CHEM 341 or 346), except in the Biochemistry Option:
CHEM 341 Drug Discovery and Development OR
CHEM 346 Scientific and Professional Ethics
E Human Psychological and Physiological Perspectives
 No applicable course from the Chemistry Major

COURSE DESCRIPTIONS FOR CATALOG

COURSES IN THE CHEMISTRY PROGRAM

* = existing courses
1 = needed in first year of initiation of program
2 = needed during the first two years after implementation

CHEM 121 GENERAL CHEMISTRY I (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: A passing score on the Chemistry Placement Examination or CHEM 105
An introductory chemistry course which provides an overview of the chemical and
physical behavior of matter with a focus on qualitative and quantitative general inorganic,
physical, and analytical chemistry. Lab fee required.
GenEd: B1

CHEM 122 GENERAL CHEMISTRY II (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: CHEM 121 with a grade of C or better
An introductory chemistry course which provides an overview of the chemical and
physical behavior of matter with a focus on quantitative general inorganic, physical, and
analytical chemistry including kinetics and thermodynamics of reactions, gas phase and
solution equilibria, and qualitative aspects of radiochemistry, organic chemistry, and
polymer chemistry. Lab fee required.
GenEd: B1

CHEM 250 QUANTITATIVE ANALYSIS (2)*
Two hours lecture per week
Prerequisite: CHEM 122 with a grade of C or better
Co-requisite: CHEM 251
An examination of the theory and techniques involved in the quantification of inorganic,
organic, and biological species from samples with an emphasis on the environmental,
biological, and medical applications of the analysis techniques.
CHEM 251 QUANTITATIVE ANALYSIS LABORATORY (2)*
Six hours of laboratory per week
Prerequisite: CHEM 122 with a grade of C or better
Co-requisite: CHEM 250
A laboratory course designed to provide students with an exposure to the techniques used in the quantification of inorganic, organic, and biological species from samples using gravimetric and volumetric analyses, potentiometric titrations, atomic absorption spectrometry, UV-visible spectroscopy, GC, and GC/MS. Lab fee required.

CHEM 305 COMPUTER APPLICATIONS IN CHEMISTRY (1)
One hour of activity per week.
Prerequisite: CHEM 122 with a grade of C or better.
Introduction to using computer applications to solve chemical problems and present scientific information. The course introduces the student to on-line journals and literature searches, reading and understanding the scientific literature, computer modeling of molecules, and website development. Lab fee required.
Gen Ed. – B4

CHEM 311 ORGANIC CHEMISTRY I (3)*
Three hours lecture per week
Prerequisite: CHEM 122 with a grade of C or better
The structure and reactions of simple organic molecules and spectroscopic techniques (NMR, GC-MS, IR, and UV-visible) used to characterize molecules. Lab fee required.

CHEM 312 ORGANIC CHEMISTRY I LABORATORY (1)*
Three hours laboratory per week
Prerequisite: CHEM 311 (or taken concurrently) with a grade of C or better
A laboratory course designed to provide students with an exposure to the techniques and instrumentation (NMR, GC, GC-MS, LC, IR, and UV-visible) used to purify and characterize organic molecules resulting from organic reactions. Lab fee required.

CHEM 314 ORGANIC CHEMISTRY II (3)*
Three hours lecture per week
Prerequisite: CHEM 311 with a grade of C or better
An examination of the structure, reactions, and spectroscopy of organic compounds containing one or more functional groups, and the structures and reactions of biologically relevant molecules.

CHEM 315 ORGANIC CHEMISTRY II LABORATORY (1)*
Three hours laboratory per week
Prerequisite: CHEM 311, 312, and 314 (or taken concurrently) with grades of C or better
A laboratory course designed to provide students with experience in single-step and multi-step syntheses and characterization of organic molecules with hands-on access to instrumentation (NMR, GC, GC-MS, LC, IR, and UV-visible). Lab fee required.
CHEM 371 PHYSICAL CHEMISTRY (3)¹
Three hours lecture per week.
Prerequisite: CHEM 122 with a grade of C or better, PHYS 101 or PHYS 201, and MATH 150.
Designed to introduce the student to thermodynamics and kinetics. Areas covered will include the laws of thermodynamics, changes in state, chemical equilibrium, gas kinetic theory and rates of reactions. The will also be discussion on experimental methods used to determine chemical reaction rates.

CHEM 372 PHYSICAL CHEMISTRY LABORATORY (1)¹
Three hours lab per week.
Prerequisite: CHEM 371 (or concurrent registration)
Designed to introduce the student to experimental physical chemistry determining thermodynamics and kinetics. This class will provide a laboratory for the material covered in CHEM 371. Lab fee required.

CHEM 492 INTERNSHIP/SERVICE LEARNING (1-3)*
Prerequisite: Consent of instructor
Provides student credit for internship work and/or service learning in the community that culminates in a written and oral report. Repeatable.

CHEM 494 INDEPENDENT RESEARCH (1-3)*
Prerequisite: Consent of instructor
Provides student credit for independent research (laboratory or library) that culminates in a written and oral report. Repeatable.

CHEM 499 CHEMISTRY CAPSTONE COLLOQUIUM (1-3)¹
Prerequisite: CHEM 371; CHEM 305 and CHEM 492 or 494 (or concurrent registration)
Oral and written presentation of work completed or work-in progress projects of CHEM 492, or 494, courses. Graded credit/no-credit.

COURSES OUTSIDE OF CHEMISTRY

ENGL 330 WRITING IN THE DISCIPLINES (3)*
Three hours lecture/discussion per week
Individual and collaborative writing in a variety of styles and forms. Students will learn a variety of writing and research techniques, with special emphasis on writing for their chosen majors. Oral presentations form a portion of the course.
GenEd: A1,A2 and Interdisciplinary
ENGL 483 TECHNICAL VISUAL COMMUNICATION (3)*
Three hours lecture/discussion per week
Prerequisite: For Technical Writing Certificate students only, ENGL 482
The focus of this course is twofold. First, the student will research and write a presentation on a topic of his or her choice, suitable for a specific application (conference, meeting, etc.) and receive critiques from his or her peers and the professor. Second, the student will use that paper to form the basis of a visual presentation using up-to-date technology of various forms.

ENGL 484 TECHNICAL WRITING FOR THE SCIENCES (3)*
Three hours lecture/discussion per week
Prerequisite: For Technical Writing Certificate students only, ENGL 482
Writing for the Sciences requires a specialized understanding of the process of writing as well as the content of the final essay or article. Students will learn to do research in specialized fields and to write for a variety of scientific journals and other publications.

MATH 150. CALCULUS I (4)*
A course in analytic geometry and calculus. Elementary and transcendental functions are introduced, their properties studied; limits, derivatives, integrals and mathematical modeling used in problem-solving in sciences.

MATH 151. CALCULUS II (4)*
Prerequisite: MATH 150. Topics include: differentiation, integration, sequences, infinite series, and power series. (A lower division requirement in the quantitative economics emphasis.)

PHYS 100 INTRODUCTION TO PHYSICS I (4)*
Three hours lecture and three hours laboratory per week
A non-calculus based introduction to the concepts and principles of physics. The areas covered include classical mechanics, wave motion and thermal physics. Practical examples will be used to illustrate the relationship between physics and other disciplines, especially the life sciences, and to develop problem-solving skills. Laboratory sessions will include computer-simulated experiments. Lab fee required.
GenEd: B1

PHYS 101 INTRODUCTION TO PHYSICS II (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: PHYS 100
A non-calculus based introduction to the concepts and principles of physics. The areas covered include electromagnetic theory, light, and atomic and nuclear physics. Practical examples will be used to illustrate the relationship between physics and other disciplines, especially the life sciences, and to develop problem-solving skills. Laboratory sessions will include computer-simulated experiments. Lab fee required.
GenEd: B1
PHYS 200 GENERAL PHYSICS I (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: MATH 150
A calculus-based introduction to the concepts and principles of physics. The areas
covered include classical mechanics, wave motion and thermal physics. Practical
examples will be used to illustrate the relationship between physics and other disciplines,
including the life sciences, and to develop problem-solving skills.
Laboratory sessions will focus on computer-simulated experiments. Lab fee required.
GenEd: B1

PHYS 201 GENERAL PHYSICS II (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: PHYS 200
A calculus-based introduction to the concepts and principles of physics. The areas
covered include electromagnetic theory, light, and atomic and nuclear physics. Practical
examples will be used to illustrate the relationship between physics and other disciplines,
including the life sciences, and to develop problem-solving skills. Laboratory sessions
will focus on computer-simulated experiments. Lab fee required.
GenEd: B1

1f. List of elective courses, by catalog number, title, and units of credit that can be
used to satisfy requirements for the major. Identify those new courses that are
(1) needed to initiate the program and (2) needed during the first two years after
implementation. Include proposed catalog descriptions of all new courses.

COURSE DESCRIPTIONS FOR CATALOG

* = existing courses
1 = needed in first year of initiation of program
2 = needed during the first two years after implementation

CHEM 301 ENVIRONMENTAL CHEMISTRY (3)*
Three hours lecture per week
Prerequisite: CHEM 122 with a grade of C or better
An introduction to the chemistry of the environment. The goal of this course is to teach
the fundamental natural chemical processes of the atmosphere, oceans, and soil of the
Earth; as well as the anthropogenic effects on this system. Current topics of
environmental interest will be discussed. The sciences behind these processes will be the
focus of this course.

CHEM 313 ORGANIC CHEMISTRY I LEARNING COMMUNITY (1)*
One-hour recitation per week
Co-requisite: CHEM 311
Interactive problem-solving session for students in CHEM 311 where students work in
small groups on problems related to the content in CHEM 311.
CHEM 316 ORGANIC CHEMISTRY II LEARNING COMMUNITY (1)*
One-hour recitation per week
Co-requisite: CHEM 314
Interactive problem-solving session for students enrolled in CHEM 314 where students work in small groups on problems related to the content in CHEM 314.

CHEM 341 DRUG DISCOVERY AND DEVELOPMENT (3)*
Three hours lecture per week
How are drugs discovered? What determines the price for a drug? What is the difference between a generic and non-generic drug? These questions will be examined with an interdisciplinary approach. Topics include the isolation of compounds from natural sources, the screening of compounds for biological activity, structure-activity relationships of drugs, computer-assisted drug design, combinatorial chemistry, bioinformatics, the FDA approval process for new drugs, and the economic and business aspects of pharmaceutical investment and development. Same as BUS 341 and ECON 341.
GenEd: B1, D and Interdisciplinary

CHEM 346 SCIENTIFIC AND PROFESSIONAL ETHICS (3)*
Three hours lecture per week
Discussion of ethical issues and societal challenges derived from scientific research and professional activities. Examines the sources, fundamental principles, and applications of ethical behavior; the relationship between personal ethics and social responsibility of organizations; and the stakeholder management concept. Applies ethical principles to different types of organizations: business, non-profits, government, health care, science/technology, and other professional groups. Topics also include integrity of scientific research and literature and responsibilities of scientists to society, intellectual property, ethical practices in professional fields, ethical dilemmas in using animal or human subjects in experimentation, gene cloning, animal cloning, gene manipulation, genetic engineering, genetic counseling, and ethical issues of applying biotechnology in agricultural fields. Emphasizes cases to explore ethical issues. Same as BIOL 346 and MGT 346
GenEd: D and Interdisciplinary

CHEM 410 ADVANCED ORGANIC SYNTHESIS (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: CHEM 314, CHEM 315, and CHEM 305 (or concurrent or consent of instructor)
Modern synthetic reactions and approaches in the design of complex organic molecules. Laboratory expands on content in CHEM 312 and 315 and introduces students to advanced synthetic reactions and techniques, including inert-atmosphere techniques. Lab fee required.
CHEM 415 MOLECULAR STRUCTURE DETERMINATION (4)¹
Three hours lecture and three hours laboratory per week
Prerequisite: CHEM 314, CHEM 315, and CHEM 305 (or concurrent or consent of instructor)
Modern techniques for the determination of organic, inorganic, and biological molecular structure using X-ray crystallography, nuclear magnetic resonance spectroscopy, mass spectrometry, infrared spectroscopy, ultraviolet spectroscopy, and molecular modeling. Lab fee required.

CHEM 450 INSTRUMENTAL ANALYSIS AND LABORATORY (4)²
Three hours lecture and three hours lab per week.
Prerequisite: CHEM 250, CHEM 251, CHEM 305 (or concurrent or consent of instructor), and CHEM 315 with a grade of C or better
Designed to introduce the student to chemical analysis using instrumental methods. Areas covered will include atomic and molecular spectroscopy, chromatography, and mass spectroscopy. Lectures will focus on theory and application of these techniques to organic, inorganic, and biochemical analysis. There will also be attention paid to experimental design, materials used in scientific apparatus, vacuum science and electronic circuits. The laboratory experiments are designed to complement the lecture material. Students will design some of their own experiments in this class. Lab fee required.

CHEM 460 BIOCHEMISTRY I (4)*
Three hours lecture and three hours laboratory per week.
Prerequisite: CHEM 314 with a grade of C or better
Introduction to the physical and chemical properties of proteins and enzymes, and enzymatic catalysis and inhibition. Lab fee required.

CHEM 461 BIOCHEMISTRY II (4)¹
Three hours lecture and three hours laboratory per week.
Prerequisite: CHEM 460 with a grade of C or better; CHEM 305 (or concurrent or consent of instructor)
Introduction to the biosynthesis of proteins and nucleic acids, biosynthetic and metabolic pathways, photosynthesis, and gene expression. Lab fee required.

CHEM 465 BIOINORGANIC CHEMISTRY (3)²
Three hours lecture.
Prerequisite: CHEM 314 with a grade of C or better, and CHEM 305 (or concurrent or consent of instructor)
The inorganic chemistry of biological systems including the role of metals such as zinc, iron, copper, manganese, and molybdenum in protein/ enzyme function. The course will discuss principles of coordination chemistry, protein and DNA functional groups and their metal-binding ability, and the role of metal ions in the reaction mechanisms of metalloenzymes.
CHEM 490 SPECIAL TOPICS IN CHEMISTRY (1-3)*
Prerequisite: Consent of instructor
Specialized topics from the fields of Chemistry and Biochemistry. Repeatable by topic.

CHEM 497 DIRECTED STUDIES (1-3)*
Prerequisite: Consent of instructor
Provides student credit for curricular activities under the direction of a Chemistry faculty member. Repeatable.

1g. *If any formal options, concentrations, or special emphases are planned under the proposed major, explain fully.*

Biochemistry Option: In addition to the Chemistry Core (46 units) and as a substitution for the 14 units of Chemistry electives in the Bachelor of Arts in Chemistry, students take 8 additional units of lower-division biology requirements and 16 additional units of upper-division chemistry and biology requirements for a total of 70 units in the option.
BIOCHEMISTRY OPTION

Chemistry Core (46 units)

Additional Lower Division Requirements (8 units)

BIOL 200 Principles of Organismal and Population Biology (4 units)
BIOL 201 Principles of Cell and Molecular Biology (4 units)

Additional Upper-Division Requirements (16 units)

BIOL 300 Cell Physiology (4 units)
BIOL 400 Molecular Biology and Molecular Genetics (4 units)
CHEM 460 Biochemistry I (4 units)
CHEM 461 Biochemistry II (4 units)

Total Units in the Bachelor of Arts in Chemistry, Biochemistry Option 70 units

TOTAL UNITS FOR GRADUATION: BIOCHEMISTRY OPTION

I. Lower Division Core Required 28
II. Upper Division Core Required 18
III. Required Option Courses 24
IV. Upper Division Required Interdisciplinary General Education 9
 • In Chemistry Major 0
 • Outside of Chemistry Major 9
V. Other General Education (GE) 27
VI. Title V 6
VII. University Electives 8

Total 120
BIOL 200 PRINCIPLES OF ORGANISMAL AND POPULATION BIOLOGY (4)*
Three hours lecture and three hours laboratory per week
An introduction to organismal biology including the diversity, comparative structure, organ system function, development, phylogeny, taxonomy and systematics of prokaryotes, protists, fungi, plants and animals. Discussion of the principles of evolution including speciation and natural selection, the environmental impact and ecosystem interaction of plants and animals, the behavior of animals, population genetics and population biology. A lab fee is required.
GenEd: B2

BIOL 201 PRINCIPLES OF CELL AND MOLECULAR BIOLOGY (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: CHEM 105 or CHEM 121
This course will cover principles of basic chemistry, biological macromolecules, prokaryotic and eucaryotic cell structure and function, homeostasis, metabolism including both respiration and photosynthesis, cell division, signal transduction, Mendelian genetics, molecular genetics including transcription and translation, and a brief introduction to virology and immunology. The philosophy of science, scientific method and experimental design are foundational to the course. A lab fee is required.
GenEd: B2

BIOL 300 CELL PHYSIOLOGY (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: CHEM 122; CHEM 311 and 312 or concurrent enrollment; BIOL 201 with a grade of C or better
Detailed study of the organization and functioning of cells and cellular organelles at the cellular and molecular levels, emphasizing experimental approaches and structural and functional relationships and their regulation and control. Topics include macromolecules, membrane phenomena, metabolism, enzyme kinetics, and cellular events associated with excitable cells and tissues. A lab fee is required.

BIOL 400 MOLECULAR BIOLOGY AND MOLECULAR GENETICS (4)*
Three hours lecture and three hours laboratory per week
Prerequisite: CHEM 314 and 315, 318 or 400; BIOL 300 or 302 with a grade of C or better
Study of informational macromolecules and how they direct molecular processes in both eukaryotic and prokaryotic cells. Topics include structure, function and regulation of the genetic material at the molecular level, gene organization, structures and functions of
DNA, RNA and proteins, gene transcription and expression, RNA processing, genomics and proteomics. A lab fee is required.

CHEM 460 BIOCHEMISTRY I (4)*
Three hours lecture and three hours laboratory per week.
Prerequisite: CHEM 314 with a grade of C or better
Introduction to the physical and chemical properties of proteins and enzymes, and enzymatic catalysis and inhibition. Lab fee required.

CHEM 461 BIOCHEMISTRY II (4)
Three hours lecture and three hours laboratory per week.
Prerequisite: CHEM 400 with a grade of C or better
Introduction to the biosynthesis of proteins and nucleic acids, biosynthetic and metabolic pathways, photosynthesis, and gene expression. Lab fee required.

1h. **Course prerequisites and other criteria for admission of students to the proposed degree major program, and for their continuation in it.**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 300</td>
<td>– Cell Physiology</td>
<td>BIOL 201, CHEM 121, CHEM 311 and 312 (or taken concurrently)</td>
</tr>
<tr>
<td>BIOL 400</td>
<td>– Molecular Biology</td>
<td>BIOL 300 or 302, CHEM 314, CHEM 315, CHEM 318 or 400</td>
</tr>
<tr>
<td>CHEM 122</td>
<td>– General Chemistry II</td>
<td>CHEM 121</td>
</tr>
<tr>
<td>CHEM 250 and 251</td>
<td>– Quantitative Analysis</td>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 301</td>
<td>– Environmental Chemistry</td>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 305</td>
<td>– Computer Applications in Chemistry</td>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>– Organic Chemistry I</td>
<td>CHEM 122</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>– Organic Chemistry Laboratory I</td>
<td>CHEM 311 (or taken concurrently)</td>
</tr>
<tr>
<td>CHEM 314</td>
<td>– Organic Chemistry II</td>
<td>CHEM 311</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>– Organic Chemistry Laboratory II</td>
<td>CHEM 314 (or taken concurrently)</td>
</tr>
<tr>
<td>CHEM 371</td>
<td>– Physical Chemistry</td>
<td>CHEM 122, PHYS 101 or 201, MATH 150</td>
</tr>
</tbody>
</table>
California State University
Channel Islands

CHEM 372 – Physical Chemistry Laboratory
CHEM 371 (or concurrent registration)

CHEM 410 – Advanced Organic Synthesis
CHEM 314, CHEM 315, and CHEM 305 (or concurrent or permission)

CHEM 415 – Molecular Structure Determination
CHEM 314, CHEM 315, and CHEM 305 (or concurrent or permission)

CHEM 450 – Instrumental Analysis
CHEM 250, CHEM 251, CHEM 315, and CHEM 305 (or concurrent or permission)

CHEM 460 – Biochemistry I
CHEM 314

CHEM 461 – Biochemistry II
CHEM 460 and CHEM 305 (or concurrent or permission)

CHEM 465 – Bioinorganic Chemistry
CHEM 314 and CHEM 305 (or concurrent or permission)

CHEM 499 – Chemistry Capstone Colloquium
CHEM 371; CHEM 492, or CHEM 494 (or concurrent registration); and CHEM 305 (or concurrent or permission)
1i. *Explanation of special characteristics of the proposed degree major program, e.g., in terminology, units of credit required, types of course work, etc.*

The program focuses on the “Big Ideas” of Chemistry and requires a hand-on learning experience through the Capstone Project. Students receiving this degree will participate in an applied or basic research project in the field of chemistry. The options for this are through independent research (laboratory or library), via a service learning project, or an internship. The students will present their work, both written and orally, in their capstone course. A required advanced writing course is also included in the BA in Chemistry.

The program also implements the distinguishing characteristics of all CSUCI programs: interdisciplinarity, a service learning approach, a co-operative learning component, teamwork, and a strong general education preparation.

1j. *For undergraduate programs, provisions for articulation of the proposed major with community college programs.*

See attached spreadsheet for articulation agreements.

1k. *Provision for meeting accreditation requirements, where applicable, and anticipated date of accreditation request.*

The major accrediting body for this degree is the ACS (American Chemical Society). To obtain an ACS accredited degree would require “significant breadth and depth” in the five major areas of chemistry: Analytical, Biochemistry, Inorganic, Organic, and Physical. Significant upper division lab work in four of these areas (excluding biochemistry) is required, with additional guidelines needed for an accredited biochemistry degree. While the courses in this degree provide a solid fundamental framework in the field of chemistry, with most of the courses filling some requirements for ACS accreditation, these requirements are not fully met, and ACS accreditation is not sought after at this time.
2. Need for the Proposed Degree Major Program

2a. List of other California State University campuses currently offering or projecting the proposed degree major program; list of neighboring institutions, public and private, currently offering the proposed degree major program.

Currently, 20 of the 23 CSU campuses offer a degree in chemistry. The two that do not, besides CSUCI, are: CSU Maritime Academy, and CSU Monterey Bay. California Lutheran University is a private institution in Ventura County that also offers a degree in chemistry.

2b. Differences between the proposed program and programs listed in Section 2a above.

This program will provide an opportunity for residents the local area to earn a state-supported CSU degree in chemistry. The program is distinctive in that the each class in the curriculum follows emphasizes the “Big Ideas” of chemistry. Students will be introduced to these themes in their first-year classes (General Chemistry), and this central theme will continue to be emphasized in the core and elective classes of the major. This curriculum focuses on the fundamentals, giving the students the knowledge, skills, and experience they need to be successful. The mechanism by which the students learn the “Big Ideas” is consistent with the values of CSUCI: interdisciplinarity, a service learning approach, learning cooperatively, teamwork, and a strong general education.

2f. Professional uses of the proposed degree major program.

The student receiving a Bachelor of Arts in Chemistry will be prepared to enter the workforce, both public and private, in a variety of organizations. The local community offers above the average number of opportunities for employment for a student receiving this degree. The degree will also prepare students for further education, both graduate and professional. It is common for students with this degree to pursue further education in medical, dental, and pharmacological studies, as well as specialized fields like patent law.

2g. The expected number of majors in the year of initiation and three years and five years thereafter. The expected number of graduates in the year of initiation and three years and five years thereafter.

<table>
<thead>
<tr>
<th></th>
<th>Number of Majors</th>
<th>Number of Graduates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation Year</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Third Year</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Fifth Year</td>
<td>48</td>
<td>40</td>
</tr>
</tbody>
</table>
3. Existing Support Resources for the Proposed Degree Major Program

3a. Faculty members, with rank, appointment status, highest degree earned, date and field of highest degree, and professional experience (including publications if the proposal is for a graduate degree), who would teach in the program.

Philip Hampton Simone Aloisio
Professor of Chemistry Assistant Professor of Chemistry
Ph.D. Chemistry, 1989 Ph.D. Chemistry, 2000

Ching-Hua Wang Louise Lutze-Mann
Professor of Biology Associate Professor of Biology
M.D., 1978 Ph.D., 1983
Ph.D., 1986

Nancy Mozingo Amy Denton
Assistant Professor of Biology Assistant Professor of Biology

Geoff Dougherty
Professor of Physics
Ph.D. Biophysics, 1979

Ivona Grzegorczyk Nikolaos Diamantis
Professor of Mathematics Assistant Professor of Mathematics

Jorge Garcia Jesse Elliot
Assistant Professor of Mathematics Assistant Professor of Mathematics
Ph.D. Ph.D.
4. **Additional Support Resources Required**

4b. *Any special characteristics of the additional faculty or staff support positions needed to implement the proposed program.*

No additional faculty or staff support positions are needed to implement the proposed program.

4c. *The amount of additional lecture and/or laboratory space required to initiate and sustain the program over the next five years. Indicate any additional special facilities that will be required. If the space is under construction, what is the projected occupancy date? If the space is planned, indicate campus-wide priority of the facility, capital outlay program priority, and projected date of occupancy.*

The major requires no additional lecture or laboratory space to initiate. Existing facilities in the Science Building, along with future facilities in the Science Annex will provide the necessary laboratory space. The Science Annex is scheduled for completion in January of 2005.

4d. *Additional library resources needed. Indicate the commitment of the campus to purchase or borrow through interlibrary loan these additional resources.*

No additional library resources needed above the existing CSUCI Library acquisition program. The faculty is working with the Library staff to assure an appropriate level and subject distribution of library resources.

4e. *Additional equipment or specialized materials that will be (1) needed to implement the program and (2) needed during the first two years after initiation. Indicate the source of funds and priority to secure these resource needs.*

No additional needs beyond those planned are required to implement the program. Group II funds from the Science Annex building will be used to purchase equipment needs for the first two years after initiation of the program.
5. Abstract of the Proposal and Proposed Catalog Description

CHEMISTRY

The Chemistry Program at CSUCI is based on a “Big Ideas” approach to the discipline. The “Big Ideas” serve as core concepts to Chemistry and link the various sub-disciplines of Chemistry (Analytical, Inorganic, Organic, and Physical Chemistry and Biochemistry). Students will learn how to apply the “Big Ideas” skills to their analysis of concepts and problems. In addition to implementing the “Big Ideas” across the curriculum, students learn how to improve their analytical thinking, oral and written communication, and problem solving skills as individuals and in teams. The core of the Chemistry degree provides breadth across the sub-disciplines of Analytical, Inorganic, Organic, and Physical Chemistry. The culmination of the degree involves a capstone project, which requires a service learning, internship, or independent research experience.

Big Ideas in Chemistry:

- Geometric Structure
- Electronic Structure
- Forces between Molecules
- Thermodynamics
- Kinetics
- Reactions

The BA in Chemistry requires 60 units of coursework in Chemistry and supporting disciplines, including an advanced writing course, and 14 units of Chemistry electives. The Biochemistry Option requires additional biology and biochemistry coursework in place of the 14 units of Chemistry electives, for a total of 70 units in the option. Graduates from the BA in Chemistry will receive an excellent preparation for securing entrance to a pre-professional program (i.e., pre-medical, pre-veterinary, pre-dentistry, or pre-pharmacy), to graduate school in Chemistry or Biochemistry, and for employment in the academic, private, or public sector as Chemists, Biochemists, Forensic Scientists, and Materials Scientists.

Students who successfully graduate with the BA in Chemistry will be able to:

- Explain the “Big Ideas” of Chemistry and discriminate when they can be applied to problems in Chemistry.
- Evaluate and propose explanations for symbolic, microscopic, and macroscopic (real-life) representations of concepts including their relationship to the “Big Ideas” of Chemistry:
- Formulate hypotheses and devise and perform experiments to test a hypothesis as individuals and in a team.
- Explain key concepts in Chemistry effectively through oral and written communication.
- Interpret, evaluate and criticize the chemical literature.
DEGREES OFFERED
Bachelor of Arts in Chemistry
Option in Biochemistry
Minor in Chemistry
Certificate in Chemistry

CONTACT INFORMATION
Philip D. Hampton, PhD
Professor of Chemistry
Phone: (805) 437-8869 Fax: (805) 437-8895
Web Page: http://www.csuci.edu
Email: Philip.Hampton@csuci.edu
PROPOSED COURSE OF STUDY, BACHELOR OF ARTS IN CHEMISTRY:

FIRST YEAR (31 Units)

FALL (14 Units)
Composition and Rhetoric (ENGL 102 or ENGL 105); GE Category A-2 (3)
Critical Reasoning; GE Category A-3 (3)
CHEM 121 General Chemistry I; GE Category B-1 (4)
MATH 150 Calculus I; GE Category B-3 (4)

SPRING (17 Units)
University Elective or ENGL 103 (3)
CHEM 122 General Chemistry II (4)
MATH 151 Calculus II (4)
Foreign Language Requirement; GE Category C-3a (3)
University Elective (3)

SECOND YEAR (29 Units)

FALL (14 Units)
Oral Communication; GE Category A-1 (3)
CHEM 311 Organic Chemistry I (3)
CHEM 312 Organic Chemistry I Laboratory (1)
Social Science, General Education Requirement; GE Category D (3)
Physics requirement (PHYS 100 or 200); (4)

SPRING (15 Units)
CHEM 314 Organic Chemistry II (3)
CHEM 315 Organic Chemistry II Laboratory (1)
Social Science, General Education Requirement; GE Category D (3)
Physics requirement (PHYS 101 or 201); (4)
CHEM 305 Computer Applications in Chemistry; GE Category B-4 (1)
U.S. History; Title V (3)

THIRD YEAR (30 Units)

FALL (16 Units)
CHEM 250 Quantitative Analysis (2)
CHEM 251 Quantitative Analysis Laboratory (2)
Advanced Writing Requirement (ENGL 330, 483, or 484); (3)
Life Science, General Education Requirement; GE Category B-2 (3)*
Literature, General Education Requirement; GE Category C-2 (3)*
University Elective (3)

SPRING (14 Units)
California State University
Channel Islands

CHEM 371 Physical Chemistry (3)
CHEM 371 Physical Chemistry Laboratory (1)
Human Physiological and Psychological Perspectives, General Education Requirement; GE Category E (3)*
Multicultural General Education Requirement; GE Category C-3b (3)*
Chemistry Elective, Laboratory (4)

FOURTH YEAR (32 - 33 Units)

FALL (16 Units)
Chemistry Elective, Laboratory (4)
Chemistry Elective, Lecture (3)
Social Science, General Education Requirement; GE Category D (3)*
Visual and Performing Arts, General Education Requirement; GE Category C-1 (3)*
American Institutions Requirement; Title V (3)

SPRING (14 Units)
Chemistry Elective, Lecture (may include CHEM 341 or 346 which satisfy GE Category D); (3)
Social Science, General Education Requirement; GE Category D (0-3; may be satisfied with CHEM 341 or 346)*
University Elective, (3)
University Elective, (3)
University Elective, (0-3; three-units of electives if CHEM 341 or 346 is used to meet Category D, otherwise, no elective units)
CHEM 499 Chemistry Colloquium (1)
Capstone Requirement (CHEM 492 or 494) (1)

Note to Students: To maximize University Electives, it is recommended that the nine units of upper-division, interdisciplinary general education courses (numbered 330-349 or 430-449) be taken from those courses marked with an asterisk (*), in order to meet simultaneously Categories A-E and the nine units of Upper-Division General Education. CHEM 341 or 346 will simultaneously meet three units of Chemistry Electives, three units of GE Category D, and three units of Upper-Division General Education. Students who transfer to CSU Channel Islands with General Education Certification may include up to six units of upper-division, interdisciplinary general education courses in the Bachelor of Arts in Chemistry by taking ENGL 330 for the advanced writing requirement, and either CHEM 341 or 346 as a Chemistry Elective.
REQUIREMENTS FOR THE BACHELOR OF ARTS DEGREE IN CHEMISTRY:

Lower Division Required 28
Upper Division Required 18
Chemistry Elective Courses 14
Upper Division Required Interdisciplinary General Education 6-9
 • In Chemistry Major 0-3
 • Outside of Chemistry Major 6-9
Other General Education (GE) 30
Title V 6
University Electives 15-18
Total 120

BACHELOR OF ARTS IN CHEMISTRY

LOWER DIVISION REQUIRED MAJOR COURSES (28 Units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 122</td>
<td>General Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 250</td>
<td>Quantitative Analysis</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 251</td>
<td>Quantitative Analysis Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 150</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 100</td>
<td>Introduction to Physics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or PHYS 200 General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Introduction to Physics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or PHYS 201 General Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

UPPER DIVISION REQUIRED MAJOR COURSES (18 Units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 305</td>
<td>Computer Applications in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>Organic Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 314</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Organic Chemistry II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 371</td>
<td>Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 372</td>
<td>Physical Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 492</td>
<td>Internship/ Service Learning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or CHEM 494 Independent Research</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 499</td>
<td>Capstone Project</td>
<td>1</td>
</tr>
</tbody>
</table>
California State University
Channel Islands

ENGL 330 Writing in the Disciplines
Or ENGL 483 Technical Visual Communication
Or ENGL 484 Technical Writing in the Sciences (3 units)

UPPER DIVISION CHEMISTRY ELECTIVES (14 Units)

A total of 14 units of electives from the approved list, including a minimum of two laboratory courses, no more than 2 units of Chemistry learning community courses (i.e., CHEM 313 and 316), and a maximum of three units of CHEM 341 or 346.

TOTAL UNITS 60 UNITS

ELECTIVES in Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 301</td>
<td>Environmental Chemistry</td>
<td>(3 units)</td>
</tr>
<tr>
<td>CHEM 313</td>
<td>Organic Chemistry I Learning Community</td>
<td>(1 unit)</td>
</tr>
<tr>
<td>CHEM 316</td>
<td>Organic Chemistry II Learning Community</td>
<td>(1 unit)</td>
</tr>
<tr>
<td>CHEM 341</td>
<td>Drug Discovery and Development</td>
<td>(3 units)</td>
</tr>
<tr>
<td>CHEM 346</td>
<td>Scientific and Professional Ethics</td>
<td>(3 units)</td>
</tr>
<tr>
<td>CHEM 410</td>
<td>Advanced Organic Synthesis</td>
<td>(4 units)</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Molecular Structure Determination</td>
<td>(4 units)</td>
</tr>
<tr>
<td>CHEM 450</td>
<td>Instrumental Analysis</td>
<td>(4 units)</td>
</tr>
<tr>
<td>CHEM 460</td>
<td>Biochemistry I</td>
<td>(4 units)</td>
</tr>
<tr>
<td>CHEM 461</td>
<td>Biochemistry II</td>
<td>(4 units)</td>
</tr>
<tr>
<td>CHEM 465</td>
<td>Bioinorganic Chemistry</td>
<td>(3 units)</td>
</tr>
<tr>
<td>CHEM 490</td>
<td>Special Topics in Chemistry</td>
<td>(1-3 units)</td>
</tr>
<tr>
<td>CHEM 492</td>
<td>Internship/Service Learning</td>
<td>(1-3 units)</td>
</tr>
<tr>
<td>CHEM 494</td>
<td>Independent Research</td>
<td>(1-3 units)</td>
</tr>
<tr>
<td>CHEM 497</td>
<td>Directed Studies</td>
<td>(1-3 units)</td>
</tr>
</tbody>
</table>
PROPOSED COURSE OF STUDY, BACHELOR OF ARTS IN CHEMISTRY, BIOCHEMISTRY OPTION:

FIRST YEAR (28 Units)

FALL (14 Units)
Composition and Rhetoric (ENGL 102 or ENGL 105); GE Category A-2 (3)
Critical Reasoning; GE Category A-3 (3)
CHEM 121 General Chemistry I; GE Category B-1 (4)
MATH 150 Calculus I; GE Category B-3 (4)

SPRING (14 Units)
University Elective or ENGL 103 (3)
Oral Communication; GE Category A-1 (3)
CHEM 122 General Chemistry II (4)
MATH 151 Calculus II (4)

SECOND YEAR (31 Units)

FALL (15 Units)
CHEM 311 Organic Chemistry I (3)
CHEM 312 Organic Chemistry I Laboratory (1)
Physics requirement (PHYS 100 or 200); (4)
Foreign Language Requirement; GE Category C-3a (3)
BIOL 200 Principles of Organismal and Population Biology; GE Category B-2 (4)

SPRING (16 Units)
CHEM 314 Organic Chemistry II (3)
CHEM 315 Organic Chemistry II Laboratory (1)
CHEM 305 Computer Applications in Chemistry, General Education Requirement; GE Category B-4 (1)
Physics requirement (PHYS 101 or 201) (4)
BIOL 201 Principles of Cell and Molecular Biology (4)
U.S. History; Title V (3)

THIRD YEAR (29 Units)

FALL (15 Units)
CHEM 250 Quantitative Analysis (2)
CHEM 251 Quantitative Analysis Laboratory (2)
CHEM 460 Biochemistry I (4)
Advanced Writing Requirement (ENGL 330, 483, or 484) (3)
BIOL 300 Cell Physiology (4)

SPRING (14 Units)
CHEM 371 Physical Chemistry (3)
CHEM 371 Physical Chemistry Laboratory (1)
CHEM 461 Biochemistry II (4)
Human Physiological and Psychological Perspectives, General Education Requirement; GE Category E (3)*
Social Science, General Education Requirement; GE Category D (3)

FOURTH YEAR (32 Units)

FALL (16 Units)
BIOL 400 Molecular Biology and Genetics (4)
Social Science, General Education Requirement; GE Category D (3)*
Visual and Performing Arts, General Education Requirement; GE Category C-1 (3)*
American Institutions Requirement; Title V (3)
Literature, General Education Requirement; GE Category C-2 (3)*

SPRING (16 Units)
CHEM 499 Chemistry Colloquium (1)
Capstone Requirement (CHEM 492 or 494) (1)
Social Science, General Education Requirement; GE Category D (3)*
Social Science, General Education Requirement; GE Category D (3)*
Multicultural General Education Requirement; GE Category C-3b (3)*
University Elective (3)
University Elective (2)

Note to Students: To maximize University Electives, it is recommended that the nine units of upper-division, interdisciplinary general education courses (numbered 330-349 or 430-449) be taken from those courses marked with an asterisk (*), in order to meet simultaneously Categories A-E and the nine units of Upper-Division General Education. Students who transfer to CSU Channel Islands with General Education Certification may include up to three units of upper-division, interdisciplinary general education courses in the Bachelor of Arts in Chemistry, Biochemistry Option by taking ENGL 330 for the advanced writing requirement.
REQUIREMENTS FOR THE BACHELOR OF ARTS DEGREE IN CHEMISTRY, BIOCHEMISTRY OPTION

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Division Core Required</td>
<td>28</td>
</tr>
<tr>
<td>Upper Division Core Required</td>
<td>18</td>
</tr>
<tr>
<td>Required Option Courses</td>
<td>24</td>
</tr>
<tr>
<td>Upper Division Required Interdisciplinary General Education</td>
<td>9</td>
</tr>
<tr>
<td>• In Chemistry Major</td>
<td>0</td>
</tr>
<tr>
<td>• Outside of Chemistry Major</td>
<td>9</td>
</tr>
<tr>
<td>Other General Education (GE)</td>
<td>27</td>
</tr>
<tr>
<td>Title V</td>
<td>6</td>
</tr>
<tr>
<td>University Electives</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

BACHELOR OF ARTS IN CHEMISTRY BIOCHEMISTRY OPTION

LOWER DIVISION REQUIRED MAJOR COURSES (36 Units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 121</td>
<td>General Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 122</td>
<td>General Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 250</td>
<td>Quantitative Analysis</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 251</td>
<td>Quantitative Analysis Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>MATH 150</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 100</td>
<td>Introduction to Physics I</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 200</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Introduction to Physics II</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 201</td>
<td>General Physics II</td>
<td>4</td>
</tr>
</tbody>
</table>

UPPER DIVISION REQUIRED MAJOR COURSES (18 Units)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 311</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 312</td>
<td>Organic Chemistry I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 314</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Organic Chemistry II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 350</td>
<td>Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 372</td>
<td>Physical Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 492</td>
<td>Internship/Service Learning</td>
<td></td>
</tr>
</tbody>
</table>
California State University
Channel Islands

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 494</td>
<td>Independent Research</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 499</td>
<td>Capstone Project</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 330</td>
<td>Writing in the Disciplines</td>
<td></td>
</tr>
<tr>
<td>Or ENGL 483</td>
<td>Technical Visual Communication</td>
<td></td>
</tr>
<tr>
<td>Or ENGL 484</td>
<td>Technical Writing in the Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

REQUIRED OPTION COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>Principles of Organismal and Population Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>Principles of Cell and Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 300</td>
<td>Cell Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 400</td>
<td>Molecular Biology and Molecular Genetics</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 460</td>
<td>Biochemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 461</td>
<td>Biochemistry II</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL UNITS

70 UNITS
REQUIREMENTS FOR THE MINOR IN CHEMISTRY (23 units)

The purpose of the Chemistry minor is to provide non-majors with the Chemistry background that is needed to pursue graduate study or a career in an interdisciplinary field. Students in pre-professional programs (pre-medical, pre-dental, pre-veterinary, pre-pharmacy), or majoring in Biology or Environmental Science and Resource Management, in particular, should consider obtaining a Chemistry minor, since a significant portion of the coursework needed for the Chemistry minor is included in these programs.

Lower Division Requirements (8 units):
CHEM 121 General Chemistry I and Laboratory (4)
CHEM 122 General Chemistry II and Laboratory (4)

Upper Division Requirements (8 units):
CHEM 311 Organic Chemistry I (3)
CHEM 312 Organic Chemistry I Laboratory (1)
CHEM 314 Organic Chemistry II (3)
CHEM 315 Organic Chemistry II Laboratory (1)

Electives (7 units):
A total of 7 units of electives on the 300-400 level or CHEM 250 and CHEM 251; a maximum of three units of an upper-division interdisciplinary General Education course (CHEM 330-349 or CHEM 430-449) and/ or one unit of a Learning Community course (CHEM 313 or 316) can be applied to the Chemistry minor. Interdisciplinary General Education courses that are cross-listed with Chemistry can be counted toward the Chemistry minor.

REQUIREMENTS FOR THE CERTIFICATE IN CHEMISTRY (23 units)

The Certificate in Chemistry is designed to provide individuals who have already obtained a B.A. or B.S. degree in another discipline with the opportunity to obtain a certificate for advanced Chemistry coursework that is equivalent to a minor in Chemistry. Individuals who have previously completed a year each of calculus and physics may consider completing an additional 21 units of coursework to obtain the Bachelor of Arts in Chemistry.

Lower Division Requirements (8 units):
CHEM 121 General Chemistry I and Laboratory (4)
CHEM 122 General Chemistry II and Laboratory (4)

Upper Division Requirements (8 units):
CHEM 311 Organic Chemistry I (3)
CHEM 312 Organic Chemistry I Laboratory (1)
CHEM 314 Organic Chemistry II (3)
CHEM 315 Organic Chemistry II Laboratory (1)

Electives (7 units):
A minimum of seven units of courses with the CHEM prefix to include CHEM 250 and 251 or other upper-division CHEM prefix courses, but excluding upper-division general education courses (CHEM 330-349 or 430-449). A maximum of one unit of a Learning Community course (CHEM 313 or 316) may be applied toward the Certificate.

COURSE LIST:
From above descriptions