CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS

NEW COURSE PROPOSAL

PROGRAM AREAS ______BIOLOGICAL AND PHYSICAL SCIENCES, MATH AND COMPUTER SCIENCE____

1. Catalog Description of the Course. [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ___ hours, laboratory ___ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

COMP 532 COMPUTATIONAL BIOINFORMATICS (3)

Three hours of lecture in the lab per week.

Prerequisite: Admission to the Computer Science or Mathematics Graduate Program and consent of the instructor.

Contemporary computational models used in molecular biology and structures simulations will be introduced. Topics include dynamic programming, statistical/information techniques for pattern recognition, algorithms for string alignments, structural superposition algorithms, computing with differential information, 3D motifs, Hidden Markov Models, phylogenetic trees, genetic algorithms.

2. Mode of Instruction.

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

The course is graduate course for students in MS in Computer Science and MS in Applied Mathematics programs.

Through this course, students will be able to –

- Analyze bio-data by building data models
- Apply data mining and Artificial Intelligence methods to extract patterns
- Apply statistical methods to analyze patterns of similarities in bio-sequences
- Apply simulations tools to present central concepts
- Perform independent research on computational projects
- Use technological resources and publicaly available bio-data bases
- Explain protein classification, structure and function
- Design and implement software solutions in bioinformatics
- Work on current/industrial problems in teams.
- Organize and express ideas clearly and convincingly in oral, electronic, visual, and written forms, and as an interactive computer simulation..

4. Is this a General Education Course NO

If Yes, indicate GE category:

A (English Language, Communication, Critical Thinking)

NEWCRSFR 9/30/02
5. **Course Content in Outline Form.** *Be as brief as possible, but use as much space as necessary*

- Current computational models in molecular biology
- Strategies and role of computational methods in modern medicine
- Algorithms for string alignments
- Dynamic programming
- Bioprogramming (Perl, Ruby, Java, MySQL).
- Structural superposition algorithms,
- Computing with differential information
- Analysis of 3D motifs
- Hidden Markov Models
- Phylogenetic trees
- Statistical/information techniques for pattern recognition
- Genetic algorithms
- Microarrays
- Proteomics

6. **References.** *Provide 3 - 5 references on which this course is based and/or support it.*

7. **List Faculty Qualified to Teach This Course.**

 Computer Science and Mathematics faculty with expertise in Bioinformatics.

8. **Frequency.**
 a. Projected semesters to be offered: Fall ___X___ Spring ___X___ Summer ___

9. **New Resources Required.**
 a. Computer (data processing), audio visual, broadcasting needs, other equipment

 Use of existing computer labs.

 b. Library needs

 Bioinformatics resources

 c. Facility/Space needs

 none

10. **Consultation.**
 Attach consultation sheet from all program areas, Library, and others (if necessary)

NEWCRSFR 9/30/02
11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

No.

<table>
<thead>
<tr>
<th>Ivona Grzegorczyk</th>
<th>October 27, 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposer of Course</td>
<td>Date</td>
</tr>
</tbody>
</table>