CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS

NEW COURSE PROPOSAL

PROGRAM AREAS MATH

1. **Catalog Description of the Course.** [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ___ units); time distribution (Lecture ____ hours, laboratory ____ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

 MATH 151 CALCULUS II (4)

 Four hours of lecture per week.

 Prerequisite: MATH 150

 Topics include: differentiation, integration, sequences, infinite series, and power series.

2. **Mode of Instruction.**

<table>
<thead>
<tr>
<th>Hours per Benchmark</th>
<th>Units</th>
<th>Hours per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activity</td>
<td></td>
</tr>
</tbody>
</table>

3. **Justification and Learning Objectives for the Course.** (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

 The course is a required course for Mathematics majors.

 Through this course, students will be able to

 - Design mathematical models and work with functions
 - Compute integrals, areas, volumes, surface areas
 - Analyze various representations of functions and use them to solve problems
 - Apply modern software to solve problems
 - Apply integral optimization techniques
 - Apply sequences, series and power series to solve problems
 - Explain, using proper terminology, ideas of calculus and solve computational problems using good technique.
 - Express ideas of Calculus in oral and written form.

 This course is not designed to satisfy the University Writing or Language requirements.

4. **Is this a General Education Course**

 YES

 If Yes, indicate GE category:

 - A (English Language, Communication, Critical Thinking)
 - B (Mathematics & Sciences)
 - C (Fine Arts, Literature, Languages & Cultures)
 - D (Social Perspectives)
 - E (Human Psychological and Physiological Perspectives)
5. **Course Content in Outline Form.** [Be as brief as possible, but use as much space as necessary]

The Definite Integral
Fundamental Theorem of
Indefinite Integrals
Substitution Rule
Logarithm as an Integral
Areas between Curves
Volumes
Average Value of a Function
Integration by Parts
Trigonometric Integrals
Trigonometric Substitution
Partial Fractions
Improper Integrals
Arc Length
Surface of Revolution
Sequences
Series
Convergence Tests
Power Series
Application of Taylor Series

6. **References.** [Provide 3 - 5 references on which this course is based and/or support it.]

7. **List Faculty Qualified to Teach This Course.**

All Mathematics Faculty

8. **Frequency.**

a. Projected semesters to be offered:
Fall ___X___
Spring ___X___
Summer ___X___

9. **New Resources Required.**

a. Computer (data processing), audio visual, broadcasting needs, other equipment
Existing computer labs

b. Library needs
Existing library resources.

c. Facility/space needs
Classrooms.

10. **Consultation.**

Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

_______ Ivona Grzegorczyk ________________________________
Proposer of Course
Date