MATH 202. Biostatistics (3)
Weekly three-hour lecture/laboratory instruction and exercise.
Prerequisite: A passing score on the Entry Level Mathematics Exam (ELM) or credit for Math 105 (or equivalent).
Critical reasoning using a quantitative and statistical problem-solving approach to solve real-world problems. Uses probability and statistics to describe and analyze biological data collected from laboratory or field experiments. Course will cover descriptions of sample data, probability and empirical data distributions, sampling techniques, estimation and hypothesis testing, ANOVA, and correlation and regression analysis. Students will use standard statistical software (SPSS) to analyze real world and simulated data.
Same as BIOL 202.
GenEd: A3, B3.

2. Mode of Instruction.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Hours per Unit</th>
<th>Benchmark Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

This is a required course for Biology majors because it introduces students to the type of critical reasoning used by biologists working with empirical data. Utilizing the standard quantitative and statistical problem solving approach required of biologists, students will gain experience with quantitative tools to test and advance biological theories based on empirical data. Through this course, students will be able to:

1. apply quantitative problem-solving skills to biological problems and issues;
2. select, apply and interpret descriptive statistics in an appropriate fashion;
3. select, apply and interpret hypothesis testing methods in an appropriate fashion;
4. reason both inductively and deductively with quantitative information and data;
5. use statistical software to conduct complex statistical analysis of real-world and simulated data; and,
6. write the results of a statistical study in a lab report.

4. Is this a General Education Course

<table>
<thead>
<tr>
<th>If Yes, indicate GE category:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (English Language, Communication, Critical Thinking)</td>
</tr>
<tr>
<td>B (Mathematics & Sciences)</td>
</tr>
<tr>
<td>C (Fine Arts, Literature, Languages & Cultures)</td>
</tr>
<tr>
<td>D (Social Perspectives)</td>
</tr>
<tr>
<td>E (Human Psychological and Physiological Perspectives)</td>
</tr>
</tbody>
</table>
5. Course Content in Outline Form. [Be as brief as possible, but use as much space as necessary]

Need for quantitative methods in science in general and biology in specific
Statistical methods as ways to reason inductively and deductively in a quantitative framework
Methods of graphical and numerical description
Basic probability theory
Normal curve methods in statistics
Logic of sampling and sampling methods
Logic of hypothesis testing and experimental design
Logic of estimation
Basic hypothesis testing of differences: t- and z- tests
Advanced hypothesis testing: ANOVA models
Basic hypothesis testing of similarities: correlation and association
Advanced hypothesis testing of similarities: linear regression models
Reasoning about proportions: Chi-squared and other nonparametric methods and models
Simple spreadsheet methods for data description and analysis
Computer analysis of complex biological data using SPSS

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]

7. List Faculty Qualified to Teach This Course.

Mathematics Faculty, Prof. Harley Baker

8. Frequency.
 a. Projected semesters to be offered: Fall X Spring X Summer

9. New Resources Required.
 a. Computer (data processing), audio visual, broadcasting needs, other equipment
 b. Library needs
 c. Facility/space needs

10. Consultation.
 Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

Proposer of Course Date