California State University Channel Islands

Program Update
For Minor Program Updates Only

Program updates must be submitted by November 2, 2009 for priority catalog review

Date: 10/28/09; rev 12.7.09
Program Area: MATHEMATICS
Semester/Year first affected: Fall 2010

Instructions: Please use this Program Update form for minor changes to existing programs. Appropriate updates for this form include faculty or address changes, additions of approved electives, minor editing for clarity, and other minor updates. Any change to program requirements, units, outcomes, emphases or options, or other programmatic concerns require the standard two column Program Modification form, available at the Curriculum website.

CURRENTLY APPROVED PROGRAM WITH CHANGES TRACKED
Paste the latest approved version of your entire program in the below the line and before the Summary of Changes before you begin (If you are unsure about which version is the most recent, contact Kathy Musashi). If the form does not preset to the tracked changes mode, turn on tracked changes using Word Tools before making the necessary edits. Please set the view to ORIGINAL SHOWING MARKUP.

SUMMARY OF CHANGES (Mark applicable change box below)

x Adding elective courses
___x Updating faculty or addresses
x Minor editing for clarity

x Other, Please briefly explain Slight alteration of the requirement regarding Core courses in the MS Math program: currently students must choose three Core courses from a list of 6. The list includes graduate computer science and physics courses. Now we will require that at least two of the three core courses be Mathematics courses, which improves the quality and legitimacy of the degree program.

Mathematics
Programs Offered
• Bachelor of Science in Mathematics
• Minor in Foundational Mathematics
• Minor in Mathematics
• Master of Science in Mathematics

Deleted: 5.18.09, catalog copy
Deleted: 9/25/09

Deleted: ___
Deleted: __
Deleted: ___
Deleted: ___
Deleted: n
Deleted: Alter
Deleted: chose
Deleted: Requiring
Deleted: from

3.4.08 km2
• Approved CTC Mathematics Subject Matter
 Waiver Program

Mathematics can be pursued as a scholarly discipline of an especially elegant and creative art form or it can be treated as a valuable tool in an applied discipline. Our program addresses both needs. Students will be given a strong background in mathematics and statistics as well as a substantial amount of interdisciplinary applications in Physics, Biostatistics, Business, Computer and Information Sciences, Computer Imagining or Artificial Intelligence.

Careers
The mathematics major will prepare students for teaching careers, studies in graduate programs (in pure mathematics, applied mathematics, mathematics education, or the mathematical sciences) or for employment in high-tech and bio-tech industries, where mathematics-trained professionals with interdisciplinary expertise (sciences and business) are increasingly sought after.

Program Learning Outcomes
Students graduating from the Mathematics program will be able to:
• Demonstrate critical thinking, problem solving skills and ability to use advanced mathematical methods by identifying, evaluating, classifying, analyzing, and synthesizing data and abstract ideas in various contexts and situations;
• Demonstrate the knowledge of current mathematical applications, computing practices and use of broad technology in industry, science and education;
• Demonstrate ability to use modern software, abstract thinking, and mathematical practices connected to scientific and industrial problems, and demonstrate these skills that are currently used by technologies in society and education;
• Perform skills that enable them to evaluate, propose and convey novel solutions to scientific and business problems, etc.;
• Demonstrate cooperation skills by working effectively with others in interdisciplinary group-settings - both inside and outside the classroom; and
• Demonstrate a sense of exploration that enables students to pursue lifelong learning and currency in their careers in mathematics, statistics, education, high-tech and bio-tech industries.

Faculty
Ivona Grzegorczyk, Ph.D.
Professor of Mathematics
Chair, Mathematics Program
Academic Advisor for Mathematics and Single Subject Credential in Mathematics
Bell Tower West, Room 2275
(805) 437-8868
ivona.grze@csuci.edu
Geoffrey Buhl, Ph.D.
Assistant Professor of Mathematics
Bell Tower West, Room 2235
(805) 437-3122
geoffrey.buhl@csuci.edu

Geoffrey Dougherty, Ph.D.
Professor of Physics
Applied Physics Coordinator
Aliso Hall, Room 101
(805) 437-8990
dougherty@csuci.edu

Jesse Elliott, Ph.D.
Associate Professor of Mathematics
Bell Tower West, Room 2215
(805) 437-2768
jesse.elliott@csuci.edu

Jorge Garcia, Ph.D.
Associate Professor of Mathematics
Developmental Mathematics Coordinator
Bell Tower West, Room 2219
(805) 437-2769
garcia@csuci.edu

Kathryn Leonard, Ph.D.
Assistant Professor of Mathematics
Bell Tower West, Room 2245
(805) 437-3127
kathryn.leonard@csuci.edu

Gregory Wood, Ph.D.
Assistant Professor of Physics
Bell Tower West, Room 2295
(805) 437-3279
gregory.wood@csuci.edu

Cindy Wyels, Ph.D.
Associate Professor of Mathematics
Bachelor of Science in Mathematics - (120 units)

Lower Division Required Major Courses 34-35
Upper Division Required Major Courses 20
Upper Division Elective & Emphasis Major Courses 15-19
Electives .. 16
GE Included in Major Requirements 18
GE and American Institutions Requirement 34
TOTAL ... 120

Lower Division Requirements
34 - 35 units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 150</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 230</td>
<td>Logic and Mathematical Reasoning</td>
<td>3</td>
</tr>
<tr>
<td>MATH 240</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 250</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 200</td>
<td>General Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>and one additional science course</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>One two-semester science sequence</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One two-semester science sequence</td>
<td>7-8</td>
</tr>
</tbody>
</table>

Select one of the following:

Select one of the following:

COMP 105 Computer Programming Introduction3
COMP 150 Object-Oriented Programming............. 4

Select an additional Computer Science course:
COMP 150 or above or COMP 102 3-4

Upper Division Requirements - 20 units
MATH 300 Discrete Mathematics 3
MATH 331 History of Mathematics 3
MATH 350 Differential Equations and Dynamical Systems 3
MATH 351 Real Analysis 3
MATH 352 Probability and Statistics 3
MATH 451 Complex Analysis 3
MATH 499 Senior Colloquium 1
(twice)

Electives in Major - 9 - 13 units

Note:
1. Courses used for the emphases cannot be counted as elective.
2. Students planning on teaching math have to choose MATH 492 for field experience requirement. Other courses recommended for teaching careers are marked with T.

Note: Kathy: with "track changes" on, I couldn't tell whether I was fixing the formatting discrepancies here or making them worse. Please advise! Thanks, CW

MATH 318 Mathematics for Secondary School Teachers 3 - T
MATH 330 Mathematics and Fine Arts 3 - T
MATH 345 Digital Image Processing (COMP/PHYS) 3
MATH 354 Analysis of Algorithms 3
MATH 393 Abstract Algebra1 3 - T
MATH 428 Philosophy of Mathematics 3
MATH 429 Operations Research 3
MATH 430 Research Design and Data Analysis 3
MATH 437 Mathematics for Game Development 3
MATH 445 Image Analysis and Pattern Recognition (COMP/PHYS) 3
MATH 448 Scientific Computing 3
MATH 450 Partial Differential Equations and Mathematical Physics 3
MATH 452 Computational Bioinformatics (COMP) 4
MATH 480 Differential & Riemannian Geometry 3
MATH 482 Number Theory and Cryptography 3 - T
MATH 484 Algebraic Geometry and Coding Theory 3
MATH 490 Topics in Modern Mathematics 3
MATH 492 Internship .. 3 - T - required
MATH 494 Independent Research 1-3
MATH 497 Directed Studies 3
MATH 499 Senior Colloquium 1

Required Supporting and Other GE Courses
GE and American Institutions Requirement 34 units
Elective Courses ... 16 units

Select one interdisciplinary GE Course 3 units
Recommended:
COMP 447 Societal Issues in Computing 3
COMP 449 Human-Computer Interactions (PSY) 3
PHYS 434 Introduction to Biomedical Imaging (BIOL/HLTH) 4

Emphasis - 6 - 10 units
By the sophomore year, in order to plan their electives, students should decide on one of the following emphases and take all courses listed in the section.

Biomathematics - 10 units
Students selecting this emphasis should take BIOL 201
 MATH 202 Biostatistics (PSY) 3
 MATH 430 Research design and Data Analysis 3
 MATH 452 Computational Bioinformatics (COMP) 4

Computer Science - 9 units
Students selecting this emphasis should take COMP 150 and COMP 151 for the computer science requirements
 MATH 448 Scientific Computing 3
 MATH 354 Analysis of Algorithms 3
 COMP 350 Introduction to Software Engineering 3

Physics - 6 units
Students selecting this emphasis should take PHYS 200 and 201(8) as the science sequence.
 MATH 450 Partial Differential Equations and
 Mathematical Physics 3
 Upper division Physics course 3
Applied Physics - 6 units
Students selecting this emphasis should take PHYS 200 and 201(8) as the science sequence

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 345</td>
<td>Digital Image Processing (COMP/PHYS)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 445</td>
<td>Image Analysis and Pattern Recognition (COMP/PHYS)</td>
<td>3</td>
</tr>
</tbody>
</table>

Actuarial Sciences/Economics - 9 units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 429</td>
<td>Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ECON 300</td>
<td>Fundamentals of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 486</td>
<td>Introduction to Econometrics</td>
<td>3</td>
</tr>
</tbody>
</table>

Business Management - 9 units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 329</td>
<td>Statistics for Business and Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 429</td>
<td>Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>ECON 429</td>
<td>Economics or Upper Division Management Course</td>
<td>3</td>
</tr>
</tbody>
</table>

Cognitive Science - 9 units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 430</td>
<td>Research Design and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PSY 210</td>
<td>Learning, Cognition and Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Upper Division Cognitive Psychology Course</td>
<td>3</td>
</tr>
</tbody>
</table>

Education - 9 units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 318</td>
<td>Mathematics for Secondary School Teachers</td>
<td>3</td>
</tr>
<tr>
<td>MATH 393</td>
<td>Abstract Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 512</td>
<td>Equity, Diversity and Foundations of Schooling</td>
<td>3</td>
</tr>
</tbody>
</table>

Applied Mathematics - 9 units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 429</td>
<td>Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>MATH 448</td>
<td>Scientific Computing</td>
<td>3</td>
</tr>
<tr>
<td>MATH 450</td>
<td>Partial Differential Equations and Mathematical Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Digital Design - 9 units

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 393</td>
<td>Abstract Algebra 1</td>
<td>3</td>
</tr>
<tr>
<td>ART 108</td>
<td>Visual Technologies</td>
<td>3</td>
</tr>
</tbody>
</table>
Select one of the following:

ART 312 Digital Media Art: Time-Based Imaging and Compositing 3
ART 314 Digital Media Art: Digital Photography ... 3

Choice of other emphases or individualized emphasis is possible upon approval of the mathematics advisor.

Proposed Course of Study

Freshman Year - 30 - 32 units

MATH 150 Calculus I .. 4
MATH 151 Calculus II ... 4
MATH 230 Logic and Mathematical Reasoning .. 3
MATH 399 Modern Tech in Math 1 (twice)

PHYS 200 General Physics I 4

GE B2 Computer Science Course ... 2-4
GE Section A, C, D, or E .. 3

Select one of the following:

COMP 105 Computer Programming Introduction 3-4
COMP 150 Object Oriented Programming 4

Select either (ENGL 102+103) or ENGL 105

ENGL 102 Stretch Composition I 3
ENGL 103 Stretch Composition II 3

or

ENGL 105 Composition and Rhetoric 3
GE A2

Sophomore Year - 22 - 23 units

MATH 240 Linear Algebra 3
MATH 250 Calculus III 3
MATH 300 Discrete Mathematics 3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 350</td>
<td>Differential Equations and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Dynamical Systems</td>
<td></td>
</tr>
<tr>
<td>MATH 399</td>
<td>Modern Tech in Math</td>
<td>1</td>
</tr>
<tr>
<td>Junior Year</td>
<td>15 - 18 units + GE</td>
<td></td>
</tr>
<tr>
<td>MATH 331</td>
<td>History of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GE B3, D, INTD</td>
<td></td>
</tr>
<tr>
<td>MATH 351</td>
<td>Real Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 352</td>
<td>Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Choose one of the groups from the Emphasis Courses listed above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Year</td>
<td>14 - 15 units + GE</td>
<td></td>
</tr>
<tr>
<td>MATH 451</td>
<td>Complex Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 499</td>
<td>Senior Colloquium</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>MATH 499</td>
<td>Senior Colloquium</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Choose three or more Math Electives</td>
<td>9-12</td>
<td></td>
</tr>
</tbody>
</table>

Minor in Mathematics - (20 units)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 150</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

In addition, students should select three upper division courses 2 units from the Mathematics program approved by the advisor. Approval is not required for Computer Science majors.

Minor in Foundational Mathematics - (34 - 36 units)

This minor meets the needs of non-mathematics majors intending to enter a middle school mathematics teaching credential program. Especially, many Liberal Studies students would like to teach upper level elementary mathematics.
Lower Division Requirements
15 - 16 units
(including pre-/co-requisites)

Choose one of the following:
- MATH 101 College Algebra 3
- MATH 105 Pre-Calculus 4
- MATH 150 Calculus I 4

Choose one of the following:
- MATH 201 Elementary Statistics 3
- MATH 202 Biostatistics (PSY) 3

Additional required courses:
- MATH 208 Modern Mathematics for Elementary
 School Teaching I-Numbers and Problem Solving 3
- MATH 230 Logic & Mathematical Reasoning 3
- MATH 240 Linear Algebra 3

Upper Division Requirements - 16 units
(including pre-/co-requisites)
- MATH 308 Modern Mathematics for Elementary
 School Teaching II-Geometry, Probability
 and Statistics 3
- MATH 318 Mathematics for Secondary School
 Teachers (3-T) 3
- MATH 330 Mathematics and Fine Arts .. 3
- MATH 331 History of Mathematics 3
- MATH 499 Senior Colloquium 1

Select one of the following:
- MATH 492 Internship 1-3
- LS 499 Capstone Project 1-3

Electives
Choose one course from the list below 3-4 units
- MATH 150 Calculus I 4
- MATH 151 Calculus II 4
- MATH 300 Discrete Mathematics 3
MATH 393 Abstract Algebra I3
MATH 482 Number Theory & Cryptography.........3
or
Other upper division math course 2-4 units

Master of Science in Mathematics - (32 units)

(Offered through CSU Channel Islands’ Extended Education Program)

Our MS in Mathematics program is interdisciplinary and innovative in nature, and offers a flexible schedule with highly qualified faculty. It is designed to address the global need for people with advanced mathematical, computational, and computer skills throughout the industry, high-tech, and educational systems. Students will acquire a strong background in mathematics, and computer software, as well as the skills to conduct independent applied research or develop independent projects. The program will stress interdisciplinary applications, for example in Actuarial Sciences, Cryptography, Security, Image Recognition, Artificial Intelligence, and Mathematics Education, and will give students a valuable opportunity to gain teaching experience on the university level. Students’ specializations depend on the final project/ thesis and the electives chosen under the supervision of a Mathematics advisor. An individual study plan can be designed to meet entry requirements for Ph.D. programs in Mathematical Sciences.

Admission Requirements

1. Application. Apply to both the University and the Mathematics Program. Forms are available at the Extended University Office and on-line at http://math.csuci.edu/.
2. Recommendation. At least two letters of recommendations from academia or professional supervisors.
3. Subject Matter Preparation. Applicants are expected to hold BS degree in mathematics. However students with other degrees (or equivalent coursework) maybe considered and admitted conditionally (subject to completing relevant undergraduate mathematics courses).
4. GPA of 3.0 in Mathematical Sciences. If applicant does not have the required GPA, conditional admission maybe available on a limited bases.
5. GRE (general and mathematics) scores are recommended, but not required.

Contact:

Cindy Wyels, Ph.D.
Associate Professor of Mathematics
MS in Mathematics Graduate Program Director
Bell Tower West, Room 1191
(805) 437-3260
cynthia.wyels@csuci.edu

Ivona Grzegorczyk, Ph.D.
Requirements for the Master of Science in Mathematics - (32 units)

Core Courses - 11 units

Choose three courses from the following list. At least two courses must be in Mathematics.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 510</td>
<td>Probabilistic Methods and Measure Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 511</td>
<td>Functional Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 513</td>
<td>Advanced Algebra</td>
<td>3</td>
</tr>
<tr>
<td>COMP 510</td>
<td>Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>COMP 569</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 510</td>
<td>Advanced Image Analysis Techniques</td>
<td>3</td>
</tr>
</tbody>
</table>

And required two units of:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 599</td>
<td>Graduate Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Electives - 15 units*

Choose five electives from the following list (at least three courses in mathematics):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 511</td>
<td>Functional Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MATH 513</td>
<td>Advanced Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 555</td>
<td>Actuarial Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 565</td>
<td>Research in Mathematics Education</td>
<td>3</td>
</tr>
<tr>
<td>MATH 570</td>
<td>Combinatorics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 581</td>
<td>Mathematical Methods in Artificial Intelligence (COMP)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 582</td>
<td>Number Theory and Cryptography</td>
<td>3</td>
</tr>
<tr>
<td>MATH 584</td>
<td>Algebraic Geometry and Coding Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 587</td>
<td>Markov Chains and Markov Processes</td>
<td>3</td>
</tr>
<tr>
<td>MATH 588</td>
<td>Stochastic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 546</td>
<td>Pattern Recognition</td>
<td>3</td>
</tr>
<tr>
<td>COMP 520</td>
<td>Advanced Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>COMP 524</td>
<td>Security</td>
<td>3</td>
</tr>
<tr>
<td>COMP 529</td>
<td>Network Computing</td>
<td>3</td>
</tr>
<tr>
<td>COMP 549</td>
<td>Human-Computer Interaction</td>
<td>3</td>
</tr>
<tr>
<td>COMP 550</td>
<td>Advanced Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>COMP 569</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>COMP 571</td>
<td>Biologically Inspired Computing</td>
<td>3</td>
</tr>
</tbody>
</table>
COMP 572 Neural Networks.................................3
COMP 575 Multi-Agent Systems3
COMP 578 Data Mining.....................................3

*other graduate or junior/senior courses from related disciplines may be included with advisors approval.

Projects or Masters Thesis Emphasis - 6 units
MATH 597 Master Thesis3
or
MATH 598 Master Project3

Graduate Writing
Assessment Requirement
Writing proficiency prior to the awarding of the degree is demonstrated by successful completion of at least two credits of MATH 597 (Masters Thesis) or MATH 598 (Masters Project) with a grade of B or higher.

Cindy Wyels
Proposer of Program Modification 9/25/09
Date
APPROVAL SHEET

Program:

<table>
<thead>
<tr>
<th>Position</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Chair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curriculum Chair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean of Faculty</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>