## CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS COURSE MODIFICATION PROPOSAL Courses must be submitted by October 15, 2013, and finalized by the end of the fall semester to make the next catalog (2014-15) production

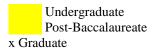
Date (Change date each time revised): 10/13/13; rev 11.5.13

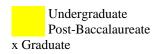
PROGRAM AREA(S): BIOL

Directions: All of sections of this form must be completed for course modifications. Use YELLOWED areas to enter data. All documents are stand alone sources of course information.

**1.** Indicate Changes and Justification for Each. [Mark an X by all change areas that apply then please follow-up your X's with justification(s) for each marked item. Be as brief as possible but, use as much space as necessary.]

|     | Course title                           | X Course Content             |  |  |  |  |
|-----|----------------------------------------|------------------------------|--|--|--|--|
|     | Prefix/suffix                          | X Course Learning Outcomes   |  |  |  |  |
|     | Course number                          | x References                 |  |  |  |  |
|     | Units                                  | GE                           |  |  |  |  |
|     | Staffing formula and enrollment limits | X Other ADD GWAR designation |  |  |  |  |
|     | Prerequisites/Corequisites             | Reactivate Course            |  |  |  |  |
| X C | Catalog description                    |                              |  |  |  |  |


**Justification:** The original course proposal was written in 2003 and because the field of bioinformatics advances rapidly, significant changes to the references, content, and learning outcomes is required to update course documentation. This course requires that students demonstrate proficiency in writing appropriate to masters-level students through several assigned literature reviews and research reports.


### 2. Course Information.

Mode of Instruction

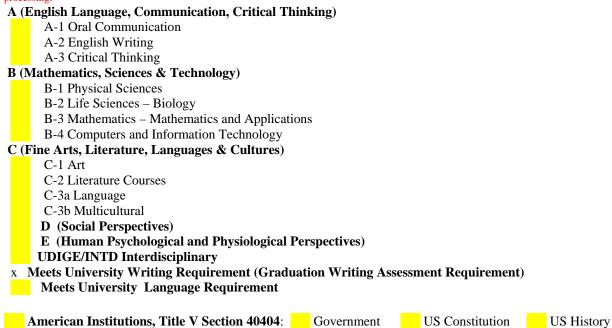
[Follow accepted catalog format.] (Add additional prefixes i f cross-listed)

| OLD                                                                                                              | NEW                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Prefix BINF Course# 500                                                                                          | Prefix BINF Course# 500                                                                                               |
| Title DNA AND PROTEIN SEQUENCE ANALYSIS Units                                                                    | Title DNA AND PROTEIN SEQUENCE ANALYSIS                                                                               |
| (3)                                                                                                              | Units (3)                                                                                                             |
| 3 hours lecture per week                                                                                         | 3 hours lecture per week                                                                                              |
| hours blank per week                                                                                             | hours blank per week                                                                                                  |
| x Prerequisites: BIOL 400 or 501                                                                                 | x Prerequisites: BIOL 400 or 501                                                                                      |
| Consent of Instructor Required for Enrollment<br>Corequisites:                                                   | Consent of Instructor Required for Enrollment<br>Corequisites:                                                        |
| <b>Catalog Description</b> (Do not use any symbols):                                                             | <b>Catalog Description</b> (Do not use any symbols):                                                                  |
| This course will introduce the computational aspects of                                                          | Introduces the computational aspects of biological                                                                    |
| biological inference from nucleic acid and protein sequences.                                                    | inference from nucleic acid and protein sequences, and the                                                            |
| Pairwise sequence comparison and multiple sequence                                                               | access and manipulation of genomic data from public                                                                   |
| alignment will be studied in detail. Additional topics include:                                                  | databases. Pairwise sequence comparison and multiple                                                                  |
| RNA structure prediction, conserved sequence pattern                                                             | sequence alignment will be studied in detail. Additional                                                              |
| recognition (sequence profile analysis), phylogenetic analysis                                                   | topics include: RNA structures, conserved sequence pattern                                                            |
| algorithms, sequence data as a means to study molecular                                                          | recognition and gene prediction, phylogenetic analysis,<br>sequence data as a means to study molecular evolution, and |
| evolution, models and algorithms for genetic regulation, contig assembly, PAM and BLOSUM matrices, protein three | human genome science. Meets graduate writing assessment                                                               |
| dimensional structure prediction.                                                                                | requirement (GWAR).                                                                                                   |
|                                                                                                                  |                                                                                                                       |
| General Education Categories:                                                                                    | General Education Categories:                                                                                         |
| Grading Scheme (Select one below):                                                                               | Grading Scheme (Select one below):                                                                                    |
| x A – F                                                                                                          | x A - F                                                                                                               |
| Credit/No Credit                                                                                                 | Credit/No Credit                                                                                                      |
| Optional (Student's Choice)                                                                                      | Optional (Student's Choice)                                                                                           |
| Repeatable for up to units<br>Total Completions                                                                  | Repeatable for up to units<br>Total Completions                                                                       |
| Multiple Enrollment in Same Semester Y/N                                                                         | Multiple Enrollment in Same Semester Y/N                                                                              |
| Course Level:                                                                                                    | Course Level:                                                                                                         |
|                                                                                                                  |                                                                                                                       |





(Provided by the Provost Office)


#### **3.** Mode of Instruction (Hours per Unit are defaulted)

Hegis Code(s)

| Existing      |          |                      |                         | Proposed |               |          |                   |                         |        |                                                |
|---------------|----------|----------------------|-------------------------|----------|---------------|----------|-------------------|-------------------------|--------|------------------------------------------------|
|               | Units    | Hours<br>Per<br>Unit | Default<br>Section Size | Graded   |               | Units    | Hours<br>Per Unit | Default<br>Section Size | Graded | CS No.<br>(filled out<br>by Provost<br>Office) |
| Lecture       | <u>3</u> | <u>1</u>             | <u>24</u>               | Х        | Lecture       | <u>3</u> | <u>1</u>          | <u>24</u>               | Х      |                                                |
| Seminar       |          | <u>1</u>             |                         |          | Seminar       |          | <u>1</u>          |                         |        |                                                |
| Lab           |          | <u>3</u>             |                         |          | Lab           |          | <u>3</u>          |                         |        |                                                |
| Activity      |          | <u>2</u>             |                         |          | Activity      |          | <u>2</u>          |                         |        |                                                |
| Field Studies |          |                      |                         |          | Field Studies |          |                   |                         |        |                                                |
| Indep Study   |          |                      |                         |          | Indep Study   |          |                   |                         |        |                                                |
| Other blank   |          |                      |                         |          | Other blank   |          |                   |                         |        |                                                |
| Online        |          |                      |                         |          | Online        |          |                   |                         |        |                                                |
|               |          |                      |                         |          |               |          |                   |                         |        |                                                |

### 4. Course Attributes:

General Education Categories: All courses with GE category notations (including deletions) must be submitted to the GE website: <a href="http://summit.csuci.edu/geapproval">http://summit.csuci.edu/geapproval</a>. Upon completion, the GE Committee will forward your documents to the Curriculum Committee for further processing.



**Service Learning Course** (Approval from the Center for Community Engagement must be received before you can request this course attribute).

Online Course (Answer YES if the course is ALWAYS delivered online).

5. Justification and Requirements for the Course. [Make a brief statement to justify the need for the course]

| OLD                                                              | NEW                                                            |
|------------------------------------------------------------------|----------------------------------------------------------------|
| This course is a required element of the core curriculum for the | This course is a required element of the core curriculum for a |
| proposed Professional Science Masters degree in                  | emphases within the MS Biotechnology and Dual MS/MBA           |
| Bioinformatics                                                   | degrees.                                                       |
| x Requirement for the Major/Minor                                | x Requirement for the Major/Minor                              |
| Elective for the Major/Minor                                     | Elective for the Major/Minor                                   |

Free Elective

Submit Program Modification if this course changes your program.

6. Student Learning Outcomes. (List in numerical order. Please refer to the Curriculum Committee's "Learning Outcomes" guideline for measurable outcomes that reflect elements of Bloom's Taxonomy: <u>http://senate.csuci.edu/comm/curriculum/resources.htm</u>. The committee recommends 4 to 8 student learning outcomes, unless governed by an external agency (e.g., Nursing).

Free Elective

Upon completion of the course, the student will be able to: **OLD**Upon completion of the course, the student will be able to:

- Explain the algorithms used in DNA sequence alignment
- Explain the significance of scoring in DNA sequence alignment
- Write Perl scripts that perform basic manipulations of nucleic acid and protein sequence data
- Evaluate the merits and disadvantages of probabilistic and non-probabilistic tree-finding methods
- Use a profile hidden Markov model to score how well an unknown protein sequence fits a family motif
- Demonstrate facility using BLAST and PSI-BLAST.

- describe the techniques used to collect sequence and gene expression data.
- identify appropriate biological databases for specific analyses.
- query databases and search for molecular sequences.
- identify sequences homologous to a known sequence using BLAST.
- describe the regulation of gene expression and the applications of gene expression profiling.
- use sequence alignment and tree building tools.
- explain the principles used to predict and to model protein structures from amino acid sequences.
- Communicate scientific information effectively in written format

No x

# 7. Course Content in Outline Form. (Be as brief as possible, but use as much space as necessary) OLD NEW

| Markov chains and hidden Markov models             | Biological databases                                  |
|----------------------------------------------------|-------------------------------------------------------|
| Pairwise alignment                                 | Pairwise sequence alignment                           |
| Profile hidden Markov models for sequence families | Basic local alignment search tool (BLAST)             |
| Multiple sequence alignment methods                | Advanced BLAST and searching techniques               |
| Phylogeny reconstruction and assessment            | Multiple Sequence Alignment                           |
| Evolutionary models                                | Phylogenetic Analysis                                 |
| RNA structure analysis                             | Short nucleotide sequences                            |
| Gene prediction                                    | Bioinformatic approaches to genes and gene expression |
| Protein classification and structure prediction    | Eukaryotic genes and gene-finding methods             |
|                                                    | RNA resources                                         |
|                                                    | Protein databases                                     |
|                                                    | Human genome                                          |

Does this course content overlap with a course offered in your academic program? Yes \_\_\_\_\_ No x If YES, what course(s) and provide a justification of the overlap.

all

Does this course content overlap a course offered in another academic area? Yes If YES, what course(s) and provide a justification of the overlap.

**Overlapping courses require Chairs' signatures.** 

8. Cross-listed Courses (Please note each prefix in item No. 1) Beyond three disciplines consult with the Curriculum Committee.

- A. List cross-listed courses (Signature of Academic Chair(s) of the other academic area(s) is required).
- B. List each cross-listed prefix for the course:
- C. Program responsible for staffing: Biology
- 9. References. [Provide 3-5 references]

OLD

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, <u>Cambridge University Press</u>.

Ewens, W. and Grant, G. 2001. Statistical Methods in Bioinformatics. Springer-Verlag.

Mount, D. Bioinformatics: Sequence and Genome Analysis. 2001. Cold Spring Harbor Laboratory Press.

Tisdall, J. Beginning Perl for Bioinformatics. 2001. O'Reilly and Associates.

NEW

Agostino, Michael. 2013. <u>Practical Bioinformatics</u>. Garland Science Pevsner, Jonathan. 2009. <u>Bioinformatics and Functional Genomics (2<sup>nd</sup> edition)</u>. John Wiley & Sons, Inc. Lesk, Arthur M. 2011. <u>Introduction to Genomics (2<sup>nd</sup> ed.)</u>. Oxford University Press. Lesk, Arthur M. 2008. <u>Introduction to Bioinformatics (3<sup>rd</sup> edition)</u>. Oxford University Press. Campbell, A. Malcolm and Laurie J. Heyer. 2007. <u>Discovering Genomics, Proteomics and Bioinformatics (2<sup>nd</sup> ed.)</u>. Pearson/Benjamin Cummings

- **10.** Tenure Track Faculty qualified to teach this course. Amy Denton, Erich Fleming
- 11. Requested Effective Date or First Semester offered: Fall 2014
- 12. New Resource Requested: Yes No x If YES, list the resources needed.
  - A. Computer Needs (data processing, audio visual, broadcasting, other equipment, etc.)
  - B. Library Needs (streaming media, video hosting, databases, exhibit space, etc.)
  - C. Facility/Space/Transportation Needs:
  - D. Lab Fee Requested: Yes \_\_\_\_\_ No \_\_\_\_ (Lab fee requests should be directed to the Student Fee Committee)
  - E. Other.
- 13. Will this course modification alter any degree, credential, certificate, or minor in your program? Yes x No If, YES attach a program update or program modification form for all programs affected. Priority deadline for New Minors and Programs: October 1, 2013 of preceding year. Priority deadline for Course Proposals and Modifications: October 15, 2013. Last day to submit forms to be considered during the current academic year: April 15<sup>th</sup>.

Amy Denton

<mark>10/13/13</mark>

Proposer(s) of Course Modification Type in name. Signatures will be collected after Curriculum approval. Date

# **Approval Sheet**

## Course: BINF 500

If your course has a General Education Component or involves Center affiliation, the Center will also sign off during the approval process.

Multiple Chair fields are available for cross-listed courses.

The CI program review process includes a report from the respective department/program on its progress toward accessibility requirement compliance. By signing below, I acknowledge the importance of incorporating accessibility in course design.

| Program Chair                                                |           |      |
|--------------------------------------------------------------|-----------|------|
|                                                              | Signature | Date |
| Program Chair                                                |           |      |
|                                                              | Signature | Date |
| Program Chair                                                |           |      |
|                                                              | Signature | Date |
| General Education Chair                                      |           |      |
|                                                              | Signature | Date |
| Center for Intl Affairs Director                             |           |      |
|                                                              | Signature | Date |
| Center for Integrative Studies<br>Director                   |           |      |
|                                                              | Signature | Date |
| Center for Multicultural<br>Engagement Director              |           |      |
|                                                              | Signature | Date |
| Center for Civic Engagement<br>and Service Learning Director |           |      |
|                                                              | Signature | Date |
| Curriculum Chair                                             |           |      |
|                                                              | Signature | Date |
| AVP                                                          |           |      |
|                                                              |           |      |