California State University Channel Islands

Program Modification

Program modifications must be submitted by November 2, 2009 for priority catalog review
Date (Change if modified and update the file name with the new date): 9.25.09, catalog copy; rev 1.27.10
Program Area: COMPUTER SCIENCE
Semester /Year First affected: FALL 2010
Instructions: Please use this Program Modification form for changes to existing program requirements, units, outcomes, emphases or options, or for other programmatic concerns. For minor changes (faculty or address changes, additions of approved electives, minor editing for clarity, and other minor updates) use the Program Update form, available at the Curriculum website.

Paste the latest approved version of your entire program in the left AND right boxes below. Make your deletions in the LEFT column by using the strikeout feature in Word or underlining, and highlight. Insert new language or other changes to the program on the RIGHT and highlight in YELLOW for easy identification. If possible, please align the two columns so that changes appear side-by-side with the original text.

CURRENTLY APPROVED PROGRAM

Computer Science

Programs Offered

- Bachelor of Science in Computer Science
- Minor in Computer Science
- Minor in Computer Game Design and Development
- Master of Science in Computer Science
- Bachelor of Science in Information Technology

The Computer Science degree offers the latest cutting edge education for various industrial and applied fields. Students are given a strong background in computer hardware and software, as well as a substantial amount of "hands-on" experience. The program stresses interdisciplinary applications in other sciences and business and prepares students for graduate studies.

Careers

The program prepares students for careers in high-tech, computer and Internetdriven industries, where interdisciplinary, dynamic and innovative professionals trained in the latest technologies are increasingly sought.

PROPOSED PROGRAM

Computer Science

Programs Offered

- Bachelor of Science in Computer Science
- Minor in Computer Science
- Minor in Computer Game Design and Development
- Master of Science in Computer Science
- Bachelor of Science in Information Technology

The Computer Science degree offers the latest cutting edge education for various industrial and applied fields. Students are given a strong background in computer hardware and software, as well as a substantial amount of "hands-on" experience. The program stresses interdisciplinary applications in other sciences and business and prepares students for graduate studies.

Careers

The program prepares students for careers in high-tech, computer and Internetdriven industries, where interdisciplinary, dynamic and innovative professionals trained in the latest technologies are increasingly sought.

Program Learning Outcomes

Students graduating from the Computer Science program will be able to:

- Demonstrate critical thinking and problem solving skills by identifying, evaluating, analyzing and presenting
fundamental software solutions and their applications
- Demonstrate the knowledge of current computing practices and broad technology use in industry and society, including a working knowledge of software development techniques;
- Be cognizant of emerging new technologies and industrial practices connected to the computer industry;
- Demonstrate communication, research and cooperation skills by working effectively with others in interdisciplinary group settings - both inside and outside the classroom; and
- Demonstrate a sense of exploration that enables them to pursue rewarding careers in high- tech and bio-tech industries with life-learning.

Faculty

William J. Wolfe, Ph.D.
Professor of Computer Science
Chair, Computer Science Program
Bell Tower West, Room 2225
(805) 437-8985
william.wolfe@csuci.edu
Peter Smith, Ph.D.
Professor of Computer Science
Academic Advisor
Bell Tower West, Room 2265
(805) 437-8882
peter.smith@csuci.edu
Andrzej A. J. Bieszczad, Ph.D.
Associate Professor of Computer Science
Director of the Masters Program
Sage Hall, Room 2127
(805) 437-2773
ai.bieszczad@csuci.edu

Program Learning Outcomes

Students graduating from the Computer Science program will be able to:

- Demonstrate critical thinking and problem solving skills by identifying, evaluating, analyzing and presenting
fundamental software solutions and their applications;
- Demonstrate the knowledge of current computing practices and broad technology use in industry and society, including a working knowledge of software development techniques;
- Be cognizant of emerging new technologies and industrial practices connected to the computer industry;
- Demonstrate communication, research and cooperation skills by working effectively with others in interdisciplinary group settings - both inside and outside the classroom; and
- Demonstrate a sense of exploration that enables them to pursue rewarding careers in high- tech and bio-tech industries with life-learning.

Faculty

William J. Wolfe, Ph.D.
Professor of Computer Science
Chair, Computer Science Program
Bell Tower West, Room 2225
(805) 437-8985
william.wolfe@csuci.edu
Peter Smith, Ph.D.
Professor of Computer Science
Academic Advisor
Bell Tower West, Room 2265
(805) 437-8882
peter.smith@csuci.edu
Andrzej A. J. Bieszczad, Ph.D.
Associate Professor of Computer Science
Director of the Masters Program
Sage Hall, Room 2127
(805) 437-2773
aj.bieszczad@csuci.edu

Contact Information http://comosci.csuci.edu	Contact Information http://compsci.csuci.edu	
Bachelor of Science in Computer Science - (122 units)	Bachelor of Science in Computer Science - (123 units)	
Lower Division Required Major Courses 42	Special Grade Requirement	
Upper Division Required Major Courses 28	A grade of C - or better is required in all pre-requisite courses in the major	
Upper Division Elective Major Courses..................... 12		
Elective Courses... 6	Lower Division Required Major Courses 42	
	Upper Division Required Major Courses 29	
American Institutions Requirement 6		
TOTAL .. 122 units		
	Elective Courses \qquad General Education. \qquad	
Note: General Education Included in Major Requirements 14	American Institutions Requirement \qquad ... 6	
Special Grade Requirement		
A grade of C -or better is required in all pre-requisite courses in the major	Note: General Education Included in Major Requirements	
Lower Division Requirements - 42 units	Lower Division Requirements - 42 units	
COMP $150 \begin{aligned} & \text { Object-Oriented Programming } 4 \\ & \text { GE-B4 }\end{aligned}$	COMP 150	Object-Oriented Programming................. 4
COMP 151 Data Structures and Program Design..... 4	COMP 151	Data Structures and Program Design...... 4
COMP 162 Computer Architecture and Assembly Language........................... 3	COMP 162	Computer Architecture and Assembly Language
COMP 232 Programming Languages 3	COMP 232	Programming Languages
COMP 262 Computer Organization and Architecture 3	$\begin{array}{ll} \text { COMP } 262 \end{array}$	Computer Organization and Architecture 3
MATH $150 \begin{array}{ll}\text { Calculus I... } 4 \\ \text { GE-B3 }\end{array}$	MATH 150	Calculus I.. 4 GE-B3
MATH 151 Calculus II.. 4	MATH 151	Calculus II.. 4
MATH $230 \begin{aligned} & \text { Logic and Mathematical Reasoning } 3 \\ & \text { GE-A3, B3 }\end{aligned}$	MATH 230	Logic and Mathematical Reasoning 3 GE-A3, B3
MATH 240 Linear Algebra 3	MATH 240	Linear Algebra................................... 3
Science: Choose either	Science: Choose	either

a. Physics 200 General Physics I (4), Physics 201 General Physics II (4) and a course from GE section B2. or
b. Physics 200 General Physics I (4), Biology 200 Principles of Organismal and Population Biology (4), Biology 212 Neurobiology and Cognitive Science (3) GE B1 and B2

Upper Division Requirements - 40 units
Major Requirements - 28 units
COMP 350 Introduction to Software Engineering 3
COMP 362 Operating Systems 3
COMP 447 Societal Issues in Computing 3
GE-B4, D, INTD
COMP 454 Automata, Languages and Computation.... 3
COMP 491 Capstone Preparation............................ 1
COMP 499 Capstone Project................................... 3
MATH 300 Discrete Mathematics 3
MATH 352 Probability and Statistics 3
MATH 354 Analysis of Algorithms............................ 3
Choose three units from the following:
COMP 420 Database Theory and Design................ 3
COMP 464 Computer Graphic Systems
and Design I \qquad 3

Electives - 12 units
Choose 12 Elective units from:
COMP 345 Digital Image Processing 3
(MATH/PHYS) GE-B1, B4, INTD
COMP 351 Distributed Computing 3
COMP 420 Database Theory and Design................ 3
COMP 421 Unix for Programmers............................ 3
COMP 424 Computer System Security 3
COMP 425 Computer Game Programming 3
COMP 429 Computer Networks 3
COMP 445 Image Analysis \& Pattern Recognition (MATH/PHYS). \qquad
GE-B1, B4, INTD
COMP 451 Advanced Object Oriented Programming3
a. Physics 200 General Physics I (4), Physics 201 General Physics II (4) and a course from GE section B2.
or
b. Physics 200 General Physics I (4), Biology 200 Principles of Organismal and Population Biology (4), Biology 212
Neurobiology and Cognitive Science (3) GE B1 and B2

Upper Division Requirements - 41 units

Major Requirements - 29 units
COMP 350 Introduction to Software Engineering 3
COMP 362 Operating Systems 4
COMP 447 Societal Issues in Computing 3
GE-B4, D, INTD
COMP 454 Automata, Languages and Computation.... 3
COMP 491 Capstone Preparation............................ 1
COMP 499 Capstone Project 3
MATH 300 Discrete Mathematics 3
MATH 352 Probability and Statistics........................ 3
MATH 354 Analysis of Algorithms..................................... 3
Choose three units from the following:
COMP 420 Database Theory and Design................ 3
COMP 464 Computer Graphic Systems
and Design I ... 3
Electives - 12 units
Choose 12 Elective units from:
COMP 345 Digital Image Processing....................... 3
(MATH/PHYS) GE-B1, B4, INTD
COMP 351 Distributed Computing 3
COMP 420 Database Theory and Design................ 3
COMP 421 Unix for Programmers........................... 3
COMP 424 Computer System Security..................... 3
COMP 425 Computer Game Programming............. 3
COMP 429 Computer Networks 3
COMP 445 Image Analysis \& Pattern Recognition (MATH/PHYS). \qquad
GE-B1, B4, INTD
COMP 451 Advanced Object Oriented Programming3

Biology 212 Neurobiology and Cognitive Science (3) GE B1 and B2		
Junior Year - 18 units + GE		
COMP		Introduction to Software Engineering 3
COMP	362	Operating Systems............................. 3
COMP	421	Unix for Programmers......................... 3
COMP	454	Automata, Languages, \& Computation . 3
MATH	352	Probability and Statistics 3
MATH	354	Analysis of Algorithms 3
Senior Year - 19 units + GE		
COMP		Database Theory and Design.............. 3
COMP	424	Computer System Security 3
COMP	429	Computer Networks 3
COMP		Societal Issues in Computing \qquad GE-B4, D, INTD
COMP		Artificial Intelligence/Neural Nets 3
COMP		Capstone Preparation 1
COMP	499	Capstone Project............................... 3
General Education Courses Included in Major		
Requirements - 14 units		
COMP		Object-Oriented Programming \qquad GE-B4
COMP		Societal Issues in Computing Sciences 3 GE-B4, D
MATH		Calculus I... 4
MATH		Logic and Mathematical Reasoning 3 GE-A3, B3
Minor in Computer Science (23 units)		

The Computer Science minor teaches the fundamentals of computer systems and

Biology 212 Neurobiology and Cognitive Science (3) GE B1 and B2

Junior Year - 19	units + GE	
COMP	350	Introduction to Software Engineering 3
COMP 362	Operating Systems ... 3	
COMP 421	Unix for Programmers..................	
COMP	454	Automata, Languages, \& Computation. 3
MATH	352	Probability and Statistics.................... 3
MATH	354	Analysis of Algorithms 3

Senior Year - 19 units + GE

COMP 420 Database Theory and Design................ 3
COMP 424 Computer System Security.................... 3
COMP 429 Computer Networks 3
COMP 447 Societal Issues in Computing 3
GE-B4, D, INTD
COMP 469 Artificial Intelligence/Neural Nets 3
COMP 491 Capstone Preparation............................ 1
COMP 499 Capstone Project 3
General Education Courses Included in Major
Requirements - 14 units
COMP 150 Object-Oriented Programming 4 GE-B4
COMP 447 Societal Issues in Computing Sciences 3 GE-B4, D
MATH 150 Calculus I.. 4 GE-B3
MATH 230 Logic and Mathematical Reasoning 3
GE-A3, B3

Minor in Computer Science
(23 units)
programming. This minor includes the fundamentals of computer programming, including design, implementation, and testing of object-oriented programs. It also teaches the basic architecture of the computer hardware, including the fundamental components of a computer system and the logical reasoning that it is based upon. Since these computer skills are extremely useful in most other disciplines, enhancing the students knowledge of technology no matter which major they have chosen.

Careers

Computer Programmer; Computer Systems Analyst; Any career that requires a basic knowledge of computer systems and programming

Requirements - 23 units
 Lower Division Requirements - 14 units
 COMP 105 Computer Programming Introductio 3
 COMP 150 Object Oriented Programming 4
 COMP 151 Data Structures and Program Design ... 4
 COMP 162 Computer Architecture and Assembly... 3

Upper Division Requirements - 9 units

Three upper-division courses from the CS program approved by the advisor.

Master of Science in Computer Science

(Offered through CSU Channel Islands Extended Education Program)

The MS in Computer Science prepares students for advanced careers in high-tech, computer-driven industries, including applications to business, aerospace, education, military, and government where interdisciplinary, dynamic and innovative professionals trained in latest technologies are increasingly sought. Students develop a strong background in computer theory, software and hardware, as well as skills to conduct applied research. The program stresses interdisciplinary applications while preparing students for a wide range of industry, academic, and research positions.
programming. This minor includes the fundamentals of computer programming, including design, implementation, and testing of object-oriented programs. It also teaches the basic architecture of the computer hardware, including the fundamental components of a computer system and the logical reasoning that it is based upon. Since these computer skills are extremely useful in most other disciplines, enhancing the students knowledge of technology no matter which major they have chosen.

Careers

Computer Programmer; Computer Systems Analyst; Any career that requires a basic knowledge of computer systems and programming

Requirements - 23 units
Lower Division Requirements - 14 units
COMP 105 Computer Programming Introduction..... 3
COMP 150 Object Oriented Programming 4
COMP 151 Data Structures and Program Design.... 4
COMP 162 Computer Architecture and Assembly ... 3

Upper Division Requirements - 9 units

Three upper-division courses from the CS program approved by the advisor.

Master of Science in Computer Science

(Offered through CSU Channel Islands Extended Education Program)

The MS in Computer Science prepares students for advanced careers in high-tech, computer-driven industries, including applications to business, aerospace,
education, military, and government where interdisciplinary, dynamic and innovative professionals trained in latest technologies are increasingly sought. Students develop a strong background in computer theory, software and hardware, as well as skills to conduct applied research. The program stresses interdisciplinary applications while preparing students for a wide range of industry, academic, and research positions.

http://www.cs.csuci.edu/MSCS/

Admission

Students seeking admission are expected to have an undergraduate degree in computer science, mathematics, engineering, or science. The applicant is expected to have a 2.7 or higher cumulative undergraduate grade point average (GPA). A GRE report is also required for applicant whose GPA is less than 3.0.

Graduation

To obtain the degree, the student must complete each course with a minimum grade of B , and defend a thesis before an examination committee.

Required Courses - 32 units
COMP 599 Graduate Seminar................................. 2
COMP 597 Thesis.. 6
Electives (minimum of $\underline{18}$ units must be COMP)........... 24
Electives - 24 units
A minimum of 18 units must be COMP
COMP 510 Algorithms.. 3
COMP 520 Advanced Database Systems 3
COMP 524 Security.. 3
COMP 529 Network Computing 3
COMP 549 Human-Computer Interaction 3
COMP 550 Advanced Software Engineering 3
COMP 569 Artificial Intelligence................................ 3
COMP 571 Biologically Inspired Computing............. 3
COMP 572 Neural Networks..................................... 3
COMP 575 Multi-agent Systems 3
COMP 578 Data Mining .. 3
COMP 590 Special Topics in Computer Science..... 3
COMP 581 Mathematical Methods in Artificial
Intelligence (MATH) 3
COMP 597 Master Thesis.................................... 1-6
COMP 599 Graduate Seminar 1
MATH 510 Probabilistic Methods \&

http://mww.cs.csuci.edu/MSCS

Admission

Students seeking admission are expected to have an undergraduate degree in computer science, mathematics, engineering, or science. Other majors will be considered on a case by case basis. The applicant is expected to have a 2.7 or higher cumulative undergraduate grade point average (GPA). A GRE report is also required for applicant whose GPA is less than 3.0.

Graduation

To obtain the degree, the student must complete each course with a minimum grade of B , and defend a thesis before an examination committee.

Required Courses - 32 units

COMP 599 Graduate Seminar 2
COMP 597 Thesis.. 6
Electives (minimum of $\underline{18}$ units must be COMP)........... 24

Electives - 24 units
A minimum of 18 units must be COMP
COMP 510 Algorithms ... 3
COMP 520 Advanced Database Systems 3
COMP 524 Security ... 3
COMP 529 Network Computing 3
COMP 549 Human-Computer Interaction................ 3
COMP 550 Advanced Software Engineering........... 3
COMP 566 Geometry and Computer Graphics 3
COMP 569 Artificial Intelligence 3
COMP 571 Biologically Inspired Computing 3
COMP 572 Neural Networks 3
COMP 575 Multi-agent Systems 3
COMP 578 Data Mining ... 3
COMP 590 Special Topics in Computer Science 3
COMP 581 Mathematical Methods in Artificial Intelligence (MATH) 3
COMP 597 Master Thesis.....................................1-6
COMP 599 Graduate Seminar 1
MATH 510 Probabilistic Methods \&
Measure Theory

		Measure Theory 3
MATH	511	Functional Analysis 3
MATH	555	Actuarial Sciences.............................. 3
MATH	565	Research In Mathematics Education 3
MATH	582	Number Theory And Cryptography 3
MATH	584	Algebraic Geometry \& Coding Theory... 3
MATH	587	Markov Chains \& Markov Processes ... 3
MATH	588	Stochastic Analysis 3
PHYS	510	Advanced Image Analysis Techniques . 3
PHYS	546	Pattern Recognition............................ 3

Graduate Writing

Assessment Requirement

Writing proficiency prior to the awarding of the degree is demonstrated by successful completion of COMP 597 Masters Thesis with a grade of B or higher.

Bachelor of Science in Information Technology

Offered

- Bachelor of Science in Information Technology

This BSIT program is specifically designed to provide an avenue of advancement for students with associate's degrees in a technology discipline such as networking (e.g.: Moorpark College's Associate in Science Degree in Computer Network Systems Engineering). This new program gives the student the opportunity to complete a Bachelor of Science degree in Information Technology. The course work will provide a foundation in mathematics, programming, networking, databases, web, computer architecture and information systems. The BSIT sits between a BS in Computer Science and a BS in Management Information Systems, emphasizing the fastest growing segments of the both: Web Systems, Databases, and Networks. For a foundation, the BSIT program draws from both camps: mathematics, science, and computer programming from Computer Science, and business organization and project management from Management Information Systems. From there it adds depth in Web Programming and Technology,

Programs

MATH	511	Functional Analysis 3
MATH	555	Actuarial Sciences 3
MATH	565	Research In Mathematics Education ... 3
MATH	582	Number Theory And Cryptography 3
MATH	584	Algebraic Geometry \& Coding Theory .. 3
MATH 587	Markov Chains \& Markov Processes 3	
MATH 588	Stochastic Analysis 3	
PHYS	510	Advanced Image Analysis Techniques. 3
PHYS	546	Pattern Recognition 3

Graduate Writing

Assessment Requirement

Writing proficiency prior to the awarding of the degree is demonstrated by successful completion of COMP 597 Masters Thesis with a grade of B or higher.

Bachelor of Science in Information Technology

Database Theory and Design, and Data Communications and Networking, while allowing for further depth in these or related areas such as e-Commerce, Computer Security, and Multimedia.

Careers

Potential career option for BSIT graduates include: Computer Systems Integrator, Computer Systems Manager, Information Technology Designer, Information Technology Support, Database Systems Manager, Database Systems Designer, Data Communications Analyst, Network Manager, Network Designer, Web Technology Manager, Web Technology Support.

Program Learning Outcomes and Contact Information http://www.cs.csuci.edu/

Bachelor of Science in Information Technology - (120 units)

Lower Division Requirements

Students entering this program are expected to have completed an associate's degree (or equivalent) in a technology area, including:

1. Statistics
2. One semester of a Laboratory science (Physics, Chemistry, or Biology).
3. First course in a computer programming language such as C , Java or $\mathrm{C}++$.
4. First course in Computer Architecture and Assembly Language.
5. CSU GE Certification or courses fulfilling the CSUCI lower division general education requirements.
6. A minimum of 10 units of lower division coursework in a technology area (computer technology, electronics technology, manufacturing technology, engineering, computer science, etc.).

Students who have not completed these $6 \underline{0}$ units prior to their admission to the program will be required to complete them at CSUCI or a community college. Course substitutions for these requirements may be made with the approval of the program chair.

Upper Division Requirements - 60 units

allowing for further depth in these or related areas such as e-Commerce, Computer Security, and Multimedia

Careers

Potential career option for BSIT graduates include: Computer Systems Integrator, Computer Systems Manager, Information Technology Designer, Information Technology Support, Database Systems Manager, Database Systems Designer, Data Communications Analyst, Network Manager, Network Designer, Web Technology Manager, Web Technology Support.

Program Learning Outcomes and Contact Information http://mww.cs.csuci.edul

Bachelor of Science in Information Technology - (121 units)

Lower Division Requirements

Students entering this program are expected to have completed an associate's degree (or equivalent) in a technology area, including:

1. Statistics
2. One semester of a Laboratory science (Physics, Chemistry, or Biology).
3. First course in a computer programming language such as C, Java or C++.
4. First course in Computer Architecture and Assembly Language.
5. CSU GE Certification or courses fulfilling the CSUCI lower division general education requirements.
6. A minimum of 10 units of lower division coursework in a technology area (computer technology, electronics technology, manufacturing technology, engineering, computer science, etc.).

Students who have not completed these $\underline{60}$ units prior to their admission to the program will be required to complete them at CSUCI or a community college. Course substitutions for these requirements may be made with the approval of the program chair.

Upper Division Requirements - 61 units

SUMMARY OF CHANGES

1. Relocate section advising of C - grade requirement.
2. Changes to number of units in CS and IT major and various sub-totals to reflect increase of 1 unit for Comp 362.
3. Specify admission procedure to MS program for students with non-science degrees.
4. Addition of Comp 566 to list of electives in the MS program.
5. Change BSIT required course from IT 420 to COMP 420.

JUSTIFICATION

1. Make more likely for students to see it.
2. To make totals accurate with modified COMP 362 (Operating Systems) where a 1-unit addition provides a lab experience. This course requires a lab component, something that has been sorely missing since the start of our CS program. All CS programs that we are familiar with (e.g.: CSUN) have this lab component. Please see the "Justification" section of the Comp 362 course modification submitted in parallel with this program modification.
3. To broaden access to the MS program.
4. Fix unintended omission of an existing course.
5. IT 420 (Database Theory and Design for IT) and COMP 420 (Database Theory and Design) have identical topics and learning goals, so there is no need for separate courses for IT and CS majors. When the BSIT program was conceived it was believed that IT students should have a special database class, one that was geared to their level of mathematical expertise (which is typically much lower than that of a CS major). But, experience has taught us that this is not true with respect to the topics in Database Theory and Design. Although the CS majors have much more mathematical depth in their program, the level of mathematics in the COMP 420 class does not justify a separate class. Additionally, we have found from experience that a mix of IT and CS majors in the Database class helps enrich and diversify the class (IT majors have more "hands on" experience whereas CS majors have more "theory"). Finally, the consolidation of IT 420 and COMP 420 will contribute to more efficient scheduling and timely completion of degree requirements. (Note: A course modification for COMP 420 is also being submitted. That course modification changes the COMP 420 prerequisite to "MATH 300 or MATH 301", a prerequisite that is more appropriate for both IT and CS majors. Currently COMP 420 has "COMP 350" as a prerequisite. In any case, COMP 350 is not the correct prerequisite for COMP 420).

William Wolfe, Peter Smith, AJ Bieszczad
10/22/2009
Proposer of Program Modification

Date

Program:

Program Chair			
Signature			
Curriculum Chair	Date		
Dean of Faculty	Signature	Date	

