CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS

NEW COURSE PROPOSAL

PROGRAM AREAS _____MATH

1. Catalog Description of the Course. [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of _____ units); time distribution (Lecture _____ hours, laboratory _____ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

MATH 151 CALCULUS II (4)

Four hours of lecture per week.

Prerequisite: MATH 150 Topics include: differentiation, integration, sequences, infinite series, and power series.

2. Mode of Instruction.

	Units	Hours per Unit	Benchmark Enrollment
Lecture	4	1	24
Seminar			
Laboratory			
Activity			

D . . . I. I

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

The course is a required course for Mathematics majors.

Through this course, students will be able to

- Design mathematical models and work with functions
- Compute integrals, areas, volumes, surface areas
- Analyze various representations of functions and use them to solve problems
- Apply modern software to solve problems
- Apply integral optimization techniques
- Apply sequences, series and power series to solve problems
- Explain, using proper terminology, ideas of calculus and solve computational problems using good technique.
- Express ideas of Calculus in oral and written form.

This course is not designed to satisfy the University Writing or Language requirements.

4. Is this a General Education Course YES If Yes, indicate GE category: A (English Language, Communication, Critical Thinking) B (Mathematics & Sciences)

B (Mathematics & Sciences)	
C (Fine Arts, Literature, Languages & Cultures)	
D (Social Perspectives)	
E (Human Psychological and Physiological Perspectives)	

5. Course Content in Outline Form. [Be as brief as possible, but use as much space as necessary] The Definite Integral Fundamental Theorem of **Indefinite Integrals** Substitution Rule Logarithm as an Integral Areas between Curves Volumes Average Value of a Function Integration by Parts **Trigonometric Integrals Trigonometric Substitution Partial Fractions Improper Integrals** Arc Length Surface of Revolution Sequences Series **Convergence Tests Power Series** Application of Taylor Series

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]

James Stewart, Calculus: Early Transcendentals, fourth edition, Brooks/Cole Publishing Co., 1999.

7. List Faculty Qualified to Teach This Course.

All Mathematics Faculty

8. Frequency.

a. Projected semesters to be offered: Fall X_ Spring X_ Summer X_

9. New Resources Required.

- a. Computer (data processing), audio visual, broadcasting needs, other equipment Existing computer labs
- b. Library needs Existing library resources.
- c. Facility/space needs Classrooms.

10. Consultation.

Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

__ Ivona Grzegorczyk _____

Proposer of Course

Date