CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS

NEW COURSE PROPOSAL

PROGRAM AREA

1. Catalog Description of the Course. [Include the course prefix, number, full title, and units. Provide a course narrative including prerequisites and corequisites. If any of the following apply, include in the description: Repeatability (May be repeated to a maximum of ______ units); time distribution (Lecture ______ hours, laboratory ______ hours); non-traditional grading system (Graded CR/NC, ABC/NC). Follow accepted catalog format.]

MATH 448. SCIENTIFIC COMPUTING (3)

Three hours of lecture in the lab per week. Prerequisites: MATH 350 or COMP 151 and Math 151.

Topics include: techniques of applied mathematics, solution of equations, finite differences, and wavelets.

GenEd: B3, B4 and Interdisciplinary

2. Mode of Instruction.

	Units	Hours per Unit	Benchmark Enrollment
Lecture	3	1	24
Seminar			
Laboratory			
Activity			

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

This course is required for Computer Science students according to accreditation guidelines and is an elective for Mathematics majors who are specializing in Computer Science. Can be used as a general education course.

Students will be able to:

- discuss analysis and development of numerical algorithms
- apply scientiofic computing methods to the solution of differential equations, nonlinear equations, as well as interpolation,
- apply numerical differentiation and methods for evaluating definite integrals
- discuss the errors involoving numerical methods
- implement numerical methods on computers.

4. Is this a General Education Course YES

If Yes, indicate GE category:

A (English Language, Communication, Critical Thinking)	
B (Mathematics & Sciences)	B3 , B4
C (Fine Arts, Literature, Languages & Cultures)	
D (Social Perspectives)	
E (Human Psychological and Physiological Perspectives)	
INTERDISCIPLINARY	Χ

5. Course Content in Outline Form. [Be as brief as possible, but use as much space as necessary]

Finite Difference Methods and Algorithms Finite Element Methods and Algorithms Large Systems of Linear Equations and Algorithms Non-linear equations and Algorithms Ordinary Differential Equations and Algorithms Trigonometric and Fourier transforms Monte Carlo methods

6. References. [Provide 3 - 5 references on which this course is based and/or support it.]

Gerald / Wheatley, Applied Numerical Analysis, sixth edition, Addison Wesley 1998

7. List Faculty Qualified to Teach This Course. All Mathematics faculty

8. Frequency.

a. Projected semesters to be offered: Fall X___ Spring X__ Summer X___

9. New Resources Required.

- a. Computer (data processing), audio visual, broadcasting needs, other equipment Access to computer labs required
- b. Library needs none
- c. Facility/space needs none

10. Consultation.

Attach consultation sheet from all program areas, Library, and others (if necessary)

11. If this new course will alter any degree, credential, certificate, or minor in your program, attach a program modification.

Ivona Grzegorczyk 1/8/03

Proposer of Course

Date