CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS

NEW COURSE PROPOSAL

DATE PROGRAM AREA	September 13, 2006 physics					
1. Catalog Description of the Course. [Follow accepted catalog format.]						
3 hours lecture pe Prerequisites P Corequisites Description Provi applications. Focus the properties of n materials. The sub	HYS 306 des an introduction to the physical ses on the fundamental, unifying concep uclei and electrons in solids. Considers	properties of solids, and their importance in high-tech ots and experimental techniques important in understanding s crystals defects that often control the actual properties of principles, to describe phenomena that are responsible for				
Gen Ed	CR/NC	Repeatable for up to units				
Lab Fee Requir	Categories Lab Fee Required A - Z Total Completions Allowed Mission Based Learning Objectives: Interdisciplinary International Multicultural Service Learning Title V Section 40404: Government US Constitution US History					
2. Mode of Instructi	on.					

		Hours per	Benchmark	Graded	CS #
	Units	Unit	Enrollment	Component	(filled in by Dean)
Lecture	3	1	24	$\overline{\boxtimes}$	
Seminar					
Laboratory					
Activity					

3. Justification and Learning Objectives for the Course. (Indicate whether required or elective, and whether it meets University Writing, and/or Language requirements) [Use as much space as necessary]

This course as an upper division core requirement for the BS in Applied Physics, and an elective for the Math and Computer Science majors. A basic understanding of solid state physics is important for practicing physicists in all areas of study, and for many other related disciplines as well. The coupling of Solid State Physics and Quantum Physics is the basis for virtually all technological aspects of modern life.

NO 🖂

Through this course, students will be able to

- describe solid materials in terms of their interatomic forces and bonds
- explain macro phenomena such as thermal conductivity, heat capacity and resistivity
- describe crystals in terms of lattice structures and dynamics
- explain the basic concepts of crystallography and the importance of periodicity
- explain the theory of semiconductors and provide common examples and their use
- describe the magnetic properties of materials
- demonstrate the role of solid state physics in other disciplines, and apply their understanding to these disciplines
- apply the basic concepts and principles of solid state physics to everyday applications
- understand the development of superconductivity from both experimental and theoretical viewpoints
- · demonstrate the role of solid state physics in other disciplines, and apply their understanding to these disciplines

The course does not meet the University Writing and/or Language requirements.

4. Is this a General Education Course YES If Yes, indicate GE category and attach GE Criteria Form:

A (English Language, Communication, Critical Thinking)

5. Course Content in Outline Form. [Be as brief as possible, but use as much space as necessary]

Solid State Physics provides the basis for the most important technological advances of the 20th century. It also provides a wide range of opportunities to observe the effects of Quantum Physics in action. Specific topics include:

- A discussion of the basic concept of a lattice and some important and yet quite simple crystal structures;
- Theory of solids; interatomic forces; covalent, ionic and metallic bonds
- Macroscopic properties, thermal conductivity and resistivity
- Optical properties of solids
- Magnetic materials; Para, ferro, and diamagnetism
- The behaviour of atoms in a crystal; vibrational modes of a lattice and their quantization ("phonons");
- The behaviour of electrons in a metal; "Free-Electron model" and the "Nearly Free-Electron model"; electron waves and lattice potential;
- Energy bands in crystals; Brillouin Zones;
- Semiconductors, direct and indirect band-gaps; the effects of doping a semiconductor; basic semiconductor devices such as the p-n junction;
- The phenomenon of superconductivity; key experiments; some attempts to explain superconductivity; the BCS (Bardeen-Cooper-Schreifer model.

Does this course overlap a course offered in your academic program? YES \square NO \boxtimes If YES, what course(s) and provide a justification of the overlap?

Does this course overlap a course offered in another academic area? YES \square NO \boxtimes If YES, what course(s) and provide a justification of the overlap? Signature of Academic Chair of the other academic area is required on the consultation sheet below.

6. Cross-listed Courses (Please fill out separate form for each PREFIX)

List Cross-listed Courses

Signature of Academic Chair(s) of the other academic area(s) is required on the consultation sheet below

Department responsible for staffing: Physics

7. References. [Provide 3 - 5 references on which this course is based and/or support it.]

The Physics of Solids, Richard Turton (ISBN 0-19-850352-0) Introduction to Solid State Physics, 7 th Ed., C. Kittel (ISBN 0-471-11181-3) Solid State Physics, J. S. Blakemore, QC176.B63. 1985 Solid State Physics (2nd Ed.) (Wiley) by J.R. Hook & H.E. Hall

8. List Faculty Qualified to Teach This Course.

Dr. Geoffrey Dougherty Dr. Gregory Wood

9. Frequency.

a. Projected semesters to be offered: Fall 🗌 Spring 🛛 Summer 🗌

10. New Resources Required. YES 🗌 NO 🖂

If YES, list the resources needed and obtain signatures from the appropriate programs/units on the consultation sheet below.

- a. Computer (data processing), audio visual, broadcasting needs, other equipment)
- b. Library needs
- c. Facility/space needs
- **11.** Will this new course alter any degree, credential, certificate, or minor in your program? YES INO If, YES attach a program modification form for all programs affected.

Dr. Geoff Dougherty Proposer of Course 10/31/2005 Date

Approvals

 Program Chair
 Date

 Curriculum Committee Chair
 Date

 Dean
 Date

1. Course Title: PHYS 406 Solid State Physics

2. Program Area: Math and Physics

Recommend Approval

Program Area/Unit	Program/Unit Chair	YES	NO (attach objections)	Date
Art				
Biology				
Business & Economics				
Education				
English				
History				
Liberal Studies				
Mathematics & CS				
Multiple Programs				
Psychology				
Library				
Information Technology				