California State University Channel Islands

Program Modification

Program modifications must be submitted by October 15, 2012, and finalized by the end of that fall semester for catalog production. Enter data in YELLOWED areas.

Date (Change date if modified and update the file name with the new date): 20122013 Catalog Copy 5.9.12; rev 11.2.12; rev 12.11.12 Program Area: BIOLOGY
Semester /Year First affected: FALL 2013
Instructions: Please use this Program Modification form for changes to existing program requirements, units, outcomes, emphases or options, or for other programmatic concerns. For minor changes (faculty or address changes, additions of approved electives, minor editing for clarity, and other minor updates) use the Program Update form, available at the Curriculum website.

Paste the latest approved version of your entire program in the left AND right boxes below. Make your deletions in the LEFT column by using the strikeout feature in Word or underlining, and highlight. Insert new language or other changes to the program on the RIGHT and highlight in YELLOW for easy identification. If possible, please align the two columns so that changes appear side-by-side with the original text.

SUMMARY OF CHANGES

1. Remove CLS Certificate due to lack of funding (Ching 5.7.12)
2. Removal of options/emphases from undergraduate major
3. Several new courses added, or course names modified
4. Several inactive courses removed
5. Undergraduate "Careers" section modified to reflect new curriculum
6. Biology minor moved to follow undergraduate major descriptions, instead of following graduate curriculum
7. Biology minor required courses amended
8. Personnel information updates

JUSTIFICATION

1. Lack of funding for CLS Certificate (Ching 5.7.12), program will not be offered in the near future.
2. The primary recommendation from Biology's external program reviewers (program review site visit November 2009) was that we significantly modify and streamline the major, removing the complicated emphasis structure and establishing 3-4 "core" courses, with elective courses recommended, but not mandated. Biology program faculty agree with this recommendation and have modified our program accordingly for the following reasons:
a. Previous emphasis structure has become too confusing for students and university advisers, curriculum is intimidating and off-putting to students due to its complexity and restrictive nature. Many students feel that they have to choose an emphasis, which then locks them into a prescribed set of courses and does not allow them to explore biological subdisciplines.
b. Making required courses available to meet graduation requirements of majors in all emphases under current budgetary restrictions is extremely difficult and limits severely the electives we can offer. Yearly elective choices are always the same, many important and valuable courses cannot be offered so that resources can be directed to required courses for lowenrollment emphases. This curtails faculty creativity and innovation, restricts us from exploring the most recent scientific developments in our curriculum, limits the diversity of elective courses available to students, and slows down progress to degree. Moving to a core/elective model allows our curriculum to be more flexible, accommodating rapid advances in biology, and accommodating diverse student interests and interdisciplinarity (students may choose certain electives from outside of biology).
c. This revised curriculum requires only 4 upper-division biology courses (considered foundational courses for all biology subdisciplines) and then gives students freedom to choose any electives. The program will provide detailed graduation roadmaps with recommendations for electives that align with a variety of student interests and career goals (e.g., there are road maps to prepare students for medical/dental/veterinary/pharmacy schools, graduate programs/careers in molecular and cellular biology, graduate programs/careers in organismal biology, ecology and conservation, preparation for biology teaching, preparation for clinical laboratory scientist internships and certification, etc.). Within the modified curriculum students will be able to complete requirements necessary for admission to professional schools, teaching credential programs, clinical lab science internships, but will have more freedom in elective choice.
3. New and modified courses currently under consideration have been added to the electives list where appropriate.
4. Courses on the inactive list have been removed from the electives list where appropriate.
5. Introduction to major amended to reflect the curriculum modification (e.g., references to emphases removed).
6. Biology minor description was moved from current position at the end of the Biology section to immediately following BS and BA descriptions, keeping all of the undergraduate information together instead of splitting it before and after the graduate section.
7. Biology minor courses amended slightly to align with core curriculum in major.
8. Personnel updates as required.

CURRENTLY APPROVED PROGRAM

Biology

Programs Offered

- Bachelor of Science in Biology

PROPOSED PROGRAM

Biology

Programs Offered

- Bachelor of Science in Biology

```
Emphasis in Cell and Molecular Biology
Emphasis in Clinical Laboratory Science
Emphasis in Ecology, Evolution and Organismal Biology
Emphasis in Medical Imaging
```

- Bachelor of Arts in Biology

Emphasis in Ecology, Evolution and Organismal Biology
Emphasis in Pre-Professional Studies
Emphasis in Subject Matter Preparation in
Teaching Biology

- Master of Science in Biotechnology and Bioinformatics

Emphasis in Biotechnology
Emphasis in Biomedical Engineering
Emphasis in Stem Cell Technology
and Laboratory Management

- Master of Science in Biotechnology and

Master of Business Administration (Dual Degree)

- Minor in Biology
- Clinical Training Certificate Program in Clinical

Laboratory Science

- Stem Cell Technology Certificate Program

Program Description

Biology is the study of life, its origins, diversity and intricacies. It emphasizes the relationship between structure and function in living systems and the processes, by which organisms grow, reproduce and interact with each other and their environment. The Biology Program provides its undergraduate and graduate students with a strong theoretical foundation in biology, combined with extensive hands-on laboratory experiences using state-of-the-art technology. Students take a series of core courses augmented by electives selected from areas of special interest.

Careers

The Bachelor of Science in Biology is designed for students who wish to enter health professional (e.g., medical, dental, veterinary, pharmacy) or graduate schools, or seek careers in business, industry or government.

The Bachelor of Science in Biology with an Emphasis in Cell and Molecular Biology effers students an opportunity to study the exciting developments in genetics, molecular biology, cloning, biotechnology and bioinformatics. This program leads to careers in medical sciences, biotechnology, pharmaceuticals, research and development, intellectual property and patent law.

- Bachelor of Arts in Biology

- Minor in Biology

- Master of Science in Biotechnology and Bioinformatics

Emphasis in Biotechnology
Emphasis in Biomedical Engineering
Emphasis in Stem Cell Technology
and Laboratory Management

- Master of Science in Biotechnology and

Master of Business Administration (Dual Degree)

- Stem Cell Technology Certificate Program

Program Description

Biology is the study of life, its origins, diversity and intricacies. It emphasizes the relationship between structure and function in living systems and the processes, by which organisms grow, reproduce and interact with each other and their environment. The Biology Program provides its undergraduate and graduate students with a strong theoretical foundation in biology, combined with extensive hands-on laboratory experiences using state-of-the-art technology. Students take a series of core courses augmented by electives selected from areas of special interest.

Careers

The Bachelor of Science in Biology provides breadth and depth in biology and supporting sciences and is designed for students who wish to enter health professional (e.g., medical, dental, veterinary, pharmacy) programs, graduate schools in all aspects of biology, or seek careers in business, industry or government. By following course roadmaps that align with their interests and career goals, students can choose electives that prepare them for careers in biotechnology, natural resources, conservation, education or for entry into certification programs in health-related fields (including medical imaging, clinical laboratory science, and public health microbiology).

Bachelor of Science in Biology with an Emphasis in Clinical Laboratory Science prepares students for further clinical training and California License Exam in Clinical Laboratory Science or for training and certification in Public Health Microbiology.

The Bachelor of Science in Biology with an Emphasis in Ecology, Evolution and Organismal Biology allows students to explore biodiversity at multiple levels of organization, from molecules to the biosphere. Students will gain an understanding of the complex interactions among organisms and between organisms and their physical environments. The emphasis prepares students for environmental studies conservation, research, or education. The emphasis prepares students for graduate study in all aspects of biology as well as careers in environmental science, conservation, government, research or education.
The Bachelor of Science in Biology with an Emphasis in Medical Imaging prepares students for graduate or professional study in the medical sciences (medical imaging, medical physics, health physics, dosimetry, nuclear medicine, fadiotherapy, oncology, biomedical engineering), or for entry into professional positions in the clinical environment and in medical imaging research and development.

The Bachelor of Arts degree is designed to obtain a general background in both the concepts and the technical skills of modern biology. Students completing the Bachelor of Arts major will find that their strong general background will allow them flexibility in both completing minor fields of study and career choices. The Emphasis in Subject Matter Preparation provides the depth of study necessary for securing a Single Subject Credential in Science for teaching at the high school and middle school levels. Additional courses in geology, astronomy, and chemistry are included to meet the breadth requirements for this credential.

The Biology Minor allows students in majors other than biology to explore selected area(s) at a greater depth. Equipped with a minor in biology, students with majors in other disciplines will have a greater understanding and knowledge of the latest advances in many areas of biology and will therefore be more versatile in their career paths. The requirement for a Minor in Biology is 21 units.

The Clinical Training Certificate Program in Clinical Laboratory Science will be effered at several local hospitals partnering with CI which will lead to careers in clinical laboratory science.

Program Learning Outcomes

Students graduating from the Biology program will be able to:

The Bachelor of Arts degree provides a general background in both the concepts and the technical skills of modern biology and is designed for students seeking a more flexible degree program. Within the Bachelor of Arts program, students can choose to follow an elective course roadmap required for entering a single subject credential program in science for teaching at the high school and middle school levels. Additional courses in geology, astronomy, and chemistry are recommended to meet the breadth requirements for credential programs.

The Biology Minor provides non-majors with a background in biology necessary for many graduate and professional programs. Equipped with a minor in biology, students with majors in other disciplines will have a greater understanding and knowledge of the latest advances in many areas of biology and will therefore be more versatile in their career paths. The requirement for a Minor in Biology is 21 units.

Program Learning Outcomes

Students graduating from the Biology program will be

- Explain the basic structures and fundamental processes of life at molecular, cellular and organismal levels;
- Identify the evolutionary processes that lead to adaptation and biological diversity;
- Describe the relationship between life forms and their environments and ecosystems;
- Collect, organize, analyze, interpret and present quantitative and qualitative data and incorporate them into the broader context of biological knowledge;
- Effectively apply current technology and scientific methodologies for problem solving;
- Find, select and evaluate various types of scientific information including primary research articles, mass media sources and worldwide web information; and
- Communicate effectively in written and oral forms.

Faculty

Amy Denton, PhD, Chair and Associate Professor of Biology
(805) 437-8458
amv.denton@csuci.edu
Ruben Alarcón, PhD, Assistant Professor of Biology
(805) 437-2634
ruben.alarcon@csuci.edu
Geoff Dougherty, PhD, Professor of Physics
(805) 437-8990
geoffrev.doughertv@csuci.edu
Nancy Mozingo, PhD, Associate Professor of Biology (805) 437-8989
nancy.mozingo@csuci.edu
Nitika Parmar, PhD, Assistant Professor of Biology (805) 437-8873
nitika.parmar@cusci.edu
Ching-Hua Wang, MD, PhD, Professor of Biology
Director of MS in Biotechnology and Bioinformatics
Special Assistant to the Provost
(805) 437-8870
ching-hua.wana@csuci.edu
able to

- Explain the basic structures and fundamental processes of life at molecular, cellular and organismal levels;
- Identify the evolutionary processes that lead to adaptation and biological diversity;
- Describe the relationship between life forms and their environments and ecosystems;
- Collect, organize, analyze, interpret and present quantitative and qualitative data and incorporate them into the broader context of biological knowledge;
- Effectively apply current technology and scientific methodologies for problem solving;
- Find, select and evaluate various types of scientific information including primary research articles, mass media sources and worldwide web information; and
- Communicate effectively in written and oral forms.

Faculty

Amy Denton, PhD, Chair and Associate Professor of Biology
Director, M.S. Biotechnology Program
(805) 437-8458
amy.denton@csuci.edu
Ruben Alarcón, PhD, Assistant Professor of Biology (805) 437-2634
ruben.alarcon@csuci.edu
Geoff Dougherty, PhD, Professor of Physics
(805) 437-8990
geoffrey.dougherty@csuci.edu
Erich Fleming, PhD, Assistant Professor of Biology (805) 437-3696
erich.fleming@csuci.edu
Nancy Mozingo, PhD, Associate Professor of Biology (805) 437-8989
nancy.mozingo@csuci.edu
Nitika Parmar, PhD, Associate Professor of Biology
Director, CIRM Bridges to Stem Cell Research Training Grant (805) 437-8873
nitika.parmar@cusci.edu

Contact Information

http://biology.csuci.edu
biology@csuci.edu
For graduation roadmaps for the B.S. B.A. and M.S. programs in Biology, please visit: http://biology.csuci.edu.

Bachelor of Science Degree in Biology - (120 units)

Gommon Lower Division Requirements for All Emphases of the Bachelor of Science Degree in Biology - 8 units

$$
\begin{array}{lll}
\text { BIOL } & \text { 200* } & \begin{array}{l}
\text { Principles of Organismal and } \\
\text { Population Biology, GE B2 } 4
\end{array} \\
\text { BIOL } & \text { 201* } & \begin{array}{l}
\text { Principles of Cell \& Molecular Biology, } \\
\text { GE B2 ... } 4
\end{array}
\end{array}
$$

Upper Division Requirements in the Major 39 units

1. Required Biology Courses - 25 units

BIOL	300	Cell Biology 4
BIOL	302	Genetics .. 4
BIOL	303	Evolutionary Biology 3
BIOL	304	Comparative Animal Physiology 3
BIOL	400	Molecular Biology 4
BIOL	433*	Ecology and the Environment,
		GE B2, UDIGE 4
BIOL	499	Senior Capstone in Biology 3

2. Electives in Biology - 14 units

Select a minimum of 14 units of biology courses from 300 and 400 levels, one of which must be a lab course. Biology courses numbered from 326 to 345 are counted toward GE credits only and they are not counted towards the 14 units of electives.

Contact Information

http://biology.csuci.edu
biology@csuci.edu
For graduation roadmaps for the B.S. B.A. and M.S. programs in Biology, please visit: http://biology.csuci.edu.

Bachelor of Science Degree in
 Biology - (120 units)

Lower Division Requirements in the Major 8 units

BIOL	200*	Principles of Organismal and Population Biology, GE B2 4
BIOL	201^{*}	Principles of Cell \& Molecular Biology, GE B2 ... 4

Upper Division Requirements in the Major

39 units

1. Required Biology Courses - 14 units

BIOL	300	Cell Biology
BIOL	302	Genetics .. 4
BIOL	303	Evolutionary Biology 3
BIOL	499	Senior Capstone in Bio

2. Electives in Biology - $2 \mathbf{5}$ units

Use the appropriate graduation roadmap for guidance in selecting a minimum of $\underline{25}$ units of biology courses from 300 and 400 levels, two of which must be lab courses.

BIOL	316	Invertebrate Zoology 4
BIOL	317	Parasitology ... 4
BIOL	318	Medical Mycology 4
BIOL	319	Plant Identification and Systematics 4
BIOL	335	The Biosphere ... 3
BIOL	345	Science and Public Policy (POLS).............. 3
BIOL	389	The Science of Art \& the Art of Science (ART).. 3
BIOL	400	Molecular Biology 4
BIOL	401	Biotechnology and Recombinant
BIOL	406	Evolutionary Biogeography
BIOL	407	Behavioral Ecology 3
BIOL	416	Radiobiology and Radionuclides (PHYS) 3
BIOL	420	Cellular \& Molecular Immunology 4
BIOL	421	Virology ... 3
BIOL	422	Molecular Plant Physiology 4
BIOL	423	Cellular \& Molecular Neurobiology 3
BIOL	424	Human Physiology 3
BIOL	425	Human Genetics 3
BIOL	426	Hematology 4
BIOL	427	Developmental Biology 4
BIOL	428	Biology of Cancer 3
BIOL	431*	Bioinformatics, GE B2, B4, UDIGE 4
BIOL	432*	Principles of Epidemiology and
		Environmental Health, GE B2, D, UDIGE 3
BIOL	433*	Ecology and the Environment, GE B2, UDIGE \qquad 4
BIOL	434*	Introduction to Biomedical Imaging, (HLTH/PHYS) GE B1, E, UDIGE 4
BIOL	450	Ichthyology: The Biology of Fishes....... 4
BIOL	451	Ornithology....................................... 4
BIOL	452	Entomology 4
BIOL	453	Methods in Population \& Community Ecology \qquad
BIOL	464	Medical Instrumentation (PHYS).......... 4
BIOL		
BIOL	490	Special Topics 3
Students may count 3-4 units from the following courses towards the $\underline{25}$ units of electives:		
CHEM	250	Quantitative Analysis.......................... 3
CHEM	251	Quantitative Analysis Laboratory.......... 1

> 4. Other Required GE Courses in Categories A-E - 36 units Category A
> (For A3, recommend MATH 230 Mathematical Reasoning)
> Category C .. 12
> Category D ... 12
> Category E ... 3
5. American Institutions Requirement - $\underline{6}$ units

Emphasis in Gell and Molecular Biology

Upper Division Requirements in the Major

40 units

1. Required Biology Courses- 31 units
BIOL 301 Microbiology 4
BIOL 302 Geneti
BIOL 303 Evolutionary Biology 3
BIOL 400 Molecular Biology
BIOL 401 Biotechnology and Recombinan
DNA Techniques 5
BIOL 431* Bioinformatics, GE B2, B4, UDIGE 4
Senior Capstone in Biology

2. Electives in Biology- 9 units

Select from the following list of courses:

MATH 150* Calculus I, GE B3 4
4. Other Required GE Courses in Categories A-E - 36 units Category A \qquad 9 (For A3, recommend MATH 230 Mathematical Reasoning)
Category C 12

Category D ... 12
Category E
. 3

| BIOL | 432* | Principles of Epidemiology and |
| :--- | :--- | :--- | :--- |
| | Environmental Health, GE B2, D, UDIGE | 3 |
| BIOL | 433* | Ecology and the Environment, |
| | GE B2, UDIGE 4 | |

No more than 2 units taken from the following can be counted towards the 9 units of electives:
BIOL 492 Internship2-3
BIOL 494 Independent Research1-3
BIOL 497 Directed Study1-3

Required Supporting and Other GE Courses

72 units

1. Chemistry minimum - 15 units

CHEM 121* General Chemistry I, GE B1................. 4 CHEM 122* General Chemistry II, GE B1............... 4
CHEM 311 Organic Chemistryl......................... 3
CHEM 312 Organic Chemistry I Laboratory 1
Select either:
CHEM 318 Biological Chemistry 3 or
CHEM 314 Organic Chemistry II 3
and
CHEM 315 Organic Chemistry II Laboratory 1
A year-long organic chemistry sequence with laboratory taken at a community college may be accepted for the Biology major in lieu of CHEM 311, 312, 314, 315
2. Physics-8 units

Select one of the following combinations:
PHYS 100* Introduction to Physics I, GE B1........... 4
PHYS 101* Introduction to Physics II, GE B1.......... 4
or
PHYS 200* General Physics 1, GE B1 4
PHYS 201* General Physics II, GE B1 4
3. Statistics and Mathematics - 7 units


```
4. Other Required GE Courses in Categories A-E - 36 units
Category A.............................................................. }
    (For A3, recommend MATH 230 Mathematical Reasoning)
Category C......................................................... 12
Category D................................................ }1
Category E......................................................3
```

5. American Institutions Requirement- $\underline{6}$ units
Emphasis in Clinical Laboratory Science

Additional Requirements in the Major - 41-43 units

1. Required Biology Courses - 37 units

2. Other Required Courses in Biology - 4-6 units

If one chooses to complete CHEM 318 and BIOL 203, one needs to complete a minimum of $\underline{6}$ units from the following courses. Otherwise, one needs to complete minimum of 4 units from the following courses:
BIOL 400 Molecular Biology 4

BIOL 424 Human Physiology 3
BIOL 425 Human Genetics 3

Required Supporting and Other GE Courses

69-71 units

1. Chemistry 19-20 units

CHEM 121* General Chemistry1, GE B1................. 4
CHEM 122* General Chemistry II, GE B1................. 4
CHEM 250 Quantitative Analysis............................. 3
CHEM 251 Quantitative Analysis Laboratory.......... 1
CHEM 311 Organic Chemistry 1............................ 3

Courses with * are double-counted toward GE credits.

Select one of the following courses:
BIOL 310 Vertebrate Biology................................. 4 BIOL 316 Invertebrate Zoology 4

2. Ecology/Evolution - 6-7 units

Select two courses from the following list:
BIOL 313 Conservation Biology (ESRM)............... 4
ESRM 352 Theory and Practice of Ecological
Restoration.. 3
BIOL 406 Evolutionary Biogeography

BIOL 407 Behavioral Ecology …............................ 3

3. Organismal Biology - 4 units

Select one course from the following list:
BIOL 310 Vertebrate Biology......................... 4
(if not taken as part of core)

BIOL 312 (I/
BIOL 316 Biology.

- (if not taken as part of core) -...

BIOL 317 Parasitology... 4
BIOL 450 Ichthyology: The Biology of Fishes 4
BIOL 451 Ornithology.. 4
BIOL 452 Entomology... 4
4. Physiology/Developmental/Molecular Biology-3-4 units Select one course from the following list:
BIOL 300 Cell Biology.. 4
BIOL 304 Comparative Animal Physiology 3
BIOL 400 Molecular Biology 4
BIOL 422 Molecular Plant Physiology................... 4
BIOL 427 Developmental Biology......................... 4
5. Cross-Disciplinary - 3-4 units

Select one course from the following list:
CHEM 301 EnvironmentalChemistry-Atmosphere
and Climate...

GEOL 321	Environmental Geology, GE B1 4 ESRM 328
	Introduction to Geographic Information Systems............................... 3

Required Supporting and Other GE Courses

63 units

1. Required Supporting Courses - 21 units

CHEM 121* General Chemistry1, GE B1................ 4
CHEM 122* General Chemistry II, GE B1................. 4
CHEM 311 Organic Chemistryl................................ 3
GEOL 122* Historical Geology, GE B1................. 3
BIOL 203* Quantitative Methods for Biology,
GE B3, B4.. 3
MATH 150* Calculus I, GE B3................................... 4
An Organic Chemistry I taken at a community college may be accepted for the Biology major in lieu of CHEM 311
2. Other Required GE Courses in Categories A-E- 36 units

Category A... 9

- (For A3, recommend MATH 230 Logic
and Mathematical Reasoning)
Category C.. 12
Category D... 12
Gategory E...... ... 3
3.American Institutions Requirement-6 units

Electives in Any Discipline-4-7 units
One must choose enough elective units to reach the required 120 units for the degree.

Emphasis in Medical Imaging

Additional Lower Division Requirements

in the Major - 8 units

BIOL 210 Human Anatomy and Physiology I........ 4
BIOL 211 Human Anatomy and Physiology II....... 4

Upper Division Requirements in the

Major-38units

1. Required Biology and Physics Courses - 30 units

BIOL 300 Cell Biology.. 4
BIOL 301 Microbiology.. 4

M 121	,
CHEM 122	General Chemistry II, GE B1 4
CHEM 311	Organic Chemistry 1 3
CHEM 312	Organic Chemistry I Laboratory 1
EM 318	Biological Chemistry.

An Organic Chemistry 1-equivalent course with laboratory taken at a community sollege may be accepted for the Biology major in lieu of CHEM 311 and 312.

```
2. Mathematics-4 units
MATH 150* Galculus I, GE B3..................................4
```

3. Physics - 8 units
Select one of the following combinations:
PHYS 100* Introduction to Physics I, GE B1............ 4
PHYS 101* Introduction to Physics II, GE B1............ 4
PHYS 200* General Physics I, GE B1...................... 4
PHYS 201* General Physics II, GE B1...................... 4
4. Other Required GE Gourses in Gategories A-D-33 units
Category A....... ... 9
(For A3, recommend MATH 230 Logic
and Mathematical Reasoning)
Gategory C... 12
Gategory D.. 12
Category E covered by a required GE course
for the degree program
5.American Institutions Requirement- 6 units

Bachelor of Arts Degree in Biology - (120 units)

Gommon Lower Division Requirements for All Emphases of the Bachelor of Arts Degree in Biology - 8 units

BIOL 200* Principles of Organismal and Population

Bachelor of Arts Degree in Biology - (120 units)

Lower Division Requirements in the Major
8 units

Required Supporting and Other GE Courses

53-54 units

1. Chemistry - 8 units
CHEM 121* General Chemistry I, GE B1 \qquad4
CHEM 122* General Chemistry II, GE B1 4
2. Mathematics and Statistics - 3-4 units

Select one of the following:
BIOL 203* Quantitative Methods for Biology,
GE B3, B4.

BIOL 424 Human Physiology 3
BIOL 425 Human Genetics 3
BIOL 426 Hematology ... 4

BIOL 427 Developmental Biology 4
BIOL 428 Biology of Cancer 3
BIOL 431* Bioinformatics, GE B2, B4, UDIGE 4
BIOL 432* Principles of Epidemiology and Environmental Health, GE B2, D, UDIGE 3
BIOL 433* Ecology and the Environment, GE B2, UDIGE \qquad ... 4
BIOL 434* Introduction to Biomedical Imaging, (HLTH/PHYS) GE B1, E, UDIGE 4
BIOL 450 Ichthyology: The Biology of Fishes.......... 4
BIOL 451 Ornithology... 4
BIOL 452 Entomology.. 4
BIOL 453 Methods in Population \& Community
Ecology .. 4
$\begin{array}{lll}\text { BIOL } & 464 & \text { Medical Instrumentation (PHYS).......................... } 3 \\ \text { BIOL } & 490 & \text { Special Topics }\end{array}$
BIOL 490 Special Topics 3

Students may count 3-4 units from the following courses towards the $\underline{22}$ units of electives:

CHEM 318 Biological Chemistry.............................. 3
GEOL 121* Physical Geology, GE B1....................... 4
GEOL 122 Historical Geology.................................. 3
PHYS 100* Introduction to Physics 1, GE B1........... 3
No more than $\underline{\underline{2}}$ units taken from the following can be counted towards the 22 units of electives:

BIOL	492	Internship...2-3
BIOL	494	Independent Research.................... 1-3
BIOL	497	Directed Study 1-3

Required Supporting and Other GE Courses

53-54 units

1. Chemistry - 8 units
General Chemistry, GE B1 \qquad

CHEM 122* General Chemistry II, GE B1
.. 4
2. Mathematics and Statistics - 3-4 units

Select one of the following:

MATH 105^{*} Pre-Calculus, GE B3 4 MATH 150^{*} Calculus I, GE B3	BIOL 203* Quantitative Methods for Biology,
	MATH 105* Pre-Calculus, GE B3 4
3. Other Required GE Courses in Categories A-E- $\underline{36}$ units	MATH 150* Calculus I, GE B3 4
Category A ... 9	
(For A3, recommend MATH 230 Logic	3. Other Required GE Courses in Categories A-E-36 units
and Mathematical Reasoning)	Category A .. 9
Category C .. 12	(For A3, recommend MATH 230 Logic
Category D .. 12	and Mathematical Reasoning)
Category E .. 3	Category C .. 12
	Category D .. 12
4. American Institutions Requirements - $\underline{6}$ units	Category E .. 3
Electives in Any Discipline - 21-22 units	4. American Institutions Requirements - $\underline{6}$ units
One must choose enough elective units to reach the required $\underline{120}$ units for the degree.	Electives in Any Discipline - 22-23 units
Emphasis in Ecology, Evolution	Select elective units to reach the required $\underline{120}$ units for the degree.
and Organismal Biology	
Upper Division Requirements in the	
Major-36-38 units	
1. Required Biology Core Courses - 26 units	
BIOL 301 Microbiology..................................... 4	
BIOL 302 Genetics ... 4	
BIOL 303 Evolutionary Biology....................... 3	
BIOL 311 Plant Biology and Ecology 4	
BIOL 433* Ecology and the Environment, GE B2,	
UDIGE... 4	
BIOL 499 Senior Capstone in Biology 3	
Select one of the following courses:	
BIOL 310 Vertebrate Biology 4	
BIOL 316 Invertebrate Zoology 4	
2. Ecology/Evolution-3-4 units	
Select one course from the following list:	
BIOL 313 Conservation Biology (ESRM) 4	
BIOL 406 Evolutionary Biogeography................. 3	
BIOL 407 Behavioral Ecology 3	
3. Organismal Biology - 4 units	


```
Upper Division Requirements in the
Major - }32\mathrm{ units
1. Required Biology Courses - 21-22 units
    BIOL 300 Cell Biology ......................................4
    BIOL 302 Genetics.........................................4
    BIOL 304 Comparative Animal Physiology ..........3
    BIOL 400 Molecular Biology.............................4
    BIOL 499 Senior Capstone in Biology .................. }
Select one of the following:
BIOL 303 Evolutionary Biology.......................... }
    BIOL 433* Ecology and the Environment,
        GE B2, UDIGE
        ..4
```


2. Electives in Biology - 10-11 units

Select a minimum of 10-11 units of Biology courses from 300 and 400 levels, one of which must be a lab course. Biology courses numbered from 326 to 345 are counted toward GE credits only and they are not counted towards the-10-11 units of electives

No more than 2 units taken from the following can be counted towards the 10-11 units of electives:

| BIOL 492 | Internship2-3 |
| :---: | :---: | :---: |
| BIOL 494 | Independent Research |
| BIOL 497 | Directed Study |

Required Supporting and Other GE Courses

69-70 units

1. Chemistry - 16 units

CHEM 121* General Chemistryl, GE B1................. 4
CHEM 122* General Chemistry II, GE B1............... 4
CHEM 311 Organic Chemistry I............................. 3
CHEM 312 Organic Chemistry ILaboratory …........ 1
CHEM 314 Organic Chemistry II 3
CHEM 315 Organic Chemistry II Laboratory 1
A year-long organic chemistry sequence with laboratory taken at a community college may be accepted for the Biology major in lieu of CHEM 311, 312, 314, 315
2. Mathematics and Statistics - 3-4 units

Select one of the following:

```
BIOL 203* Quantitative Methods for Biology,
MATH 150* Calculus I,GE B3..........................4
Check with professional schools or pre-professional advisor for specific requirements in this category.
```

```
3.Physics-8 units
```

3.Physics-8 units
-PHYS 100* Introductionto Physics I, GE B1..........4
PHYS 101* Introduction to Physics II, GE B1..........4
4.Other Required GE Courses in Categories A-E - 36 units
Category A
...
-(For A3, recommend MATH 230 Logic
and Mathematical Reasoning)
Category G... }1
Category D... 12
Category E... }

```

\section*{5. American Institutions Requirements - \(\underline{6}\) units}

\section*{Electives in Any Discipline - 10-11 units}
```

One must choose enough elective units to reach the required 120 units for the degree.

```

\section*{Emphasis in Subject Matter}

\section*{Preparation in Teaching Biology}

\section*{Upper Division Requirements in the}
```

Major-36units

1. Required Biology Courses-24 units
BIOL 300 Cell Biology ... 4
BIOL 302 Genetics ... 4
BIOL 303 Evolutionary Biology ….......................... 3
BIOL 304 Comparative Animal Physiology........... 3
BIOL 335* The Biosphere, GE B2, UDIGE........... 3^{1}
BIOL 433* Ecology and the Environment,
GE B2, UDIGE 4^{1}
BIOL 499 Senior Capstone in Biology …............... 3
2. Electives in Biology - 12 units
Select a minimum of 12 units of biology courses from 300 and 400 levels, one of
```
which must be a lab course. (Biology courses numbered from 326 to 345 , with the
exception of BIOL 335 for this emphasis are counted toward GE credits only and
they are not counted towards the 12 units of electives).

No more than \(\underline{2}\) units taken from the following can be counted towards the 12 units of electives:
\begin{tabular}{lll} 
BIOL 492 & Internship ....................................-3 \\
BIOL 494 & Independent Research ................. \\
BIOL 497 & Directed Study .............................
\end{tabular}

\section*{Required Supporting and Other GE Courses}

\section*{76 units}
1. Required Education Course- 3 units

EDUC 330*1 Introduction to Secondary Schooling, GE-D, UDIGE ................................. 3
\({ }^{1}\) BIOL 335, BIOL 433, and EDUC 330 meet only 6 of the 9 units of UDIGE; students must complete the remaining 3 units outside of courses with BIOL prefix, and excluding courses cross-listed with BIOL.
2. Mathematics and Statistics - 7 units

Select either:
\begin{tabular}{cl}
\begin{tabular}{cc} 
BIOL 203*
\end{tabular} & \begin{tabular}{c} 
Quantitative Methods for Biology, \\
GE B3, B4.............................. 3
\end{tabular} \\
and & \\
MATH 105* & Pre-Galculus, GE B3..................... 4 \\
of & \\
MATH 150* & Calculus I, GE B3.................... 4
\end{tabular}

5. American Institutions Requirements-6 units

\section*{The Master of Science Degree in Biotechnology \& Bioinformatics (34-35 units)}

\section*{Program Description}

The Master of Science in Biotechnology \& Bioinformatics is a professional degree program designed to meet the needs of biotechnology industry and related public and private agencies and organizations. The program combines rigorous scientific training in interdisciplinary areas in biotechnology, bioinformatics, biomedical engineering and stem cell technology with course work and experience in business management and regulatory affairs. The program includes a set of core courses with three emphases to choose from: biotechnology, biomedical engineering and stem cell technology and laboratory management, and several elective courses.

Biotechnology is centered in the laboratory and employs sophisticated molecular

\section*{Minor in Biology - (21 units)}

\section*{Lower Division Requirements - 8 units \\ BIOL 200* Principles of Organismal and Population Biology, GE B2 \\ BIOL 201* Principles of Cell and Molecular Biology, GE B2}

\section*{Upper Division Requirements - 12-13 units}
1. Biology - 7-8 units

BIOL 300 Cell Biology ............................................ 4
and
BIOL 302 Genetics ................................................. 4
or
BIOL 303 Evolutionary Biology........................................... 3
2. Biology Electives - 5-6 units

Select a minimum of 5-6 units of 300-400 level biology courses, with no more than one course selected from BIOL 331-345.

\section*{The Master of Science Degree in Biotechnology \& Bioinformatics (34-35 units)}

\section*{Program Description}

The Master of Science in Biotechnology \& Bioinformatics is a professional degree program designed to meet the needs of biotechnology industry and related public and private agencies and organizations. The program combines rigorous scientific training in interdisciplinary areas in biotechnology, bioinformatics, biomedical engineering and stem cell technology with course work and experience in business management and regulatory affairs. The program includes a set of core courses with three emphases to choose from: biotechnology, biomedical engineering and stem cell technology and laboratory management, and several elective courses. Biotechnology is centered in the laboratory and employs sophisticated molecular
biology techniques for applications in human and animal health, agriculture, environment, and specialty biochemical manufacturing. In this century, the major driving force for biotechnology will be the strategic use of the data derived from large-scale genome sequencing projects. Biomedical engineering is an interdisciplinary field, fusing molecular and cellular life sciences with contents in engineering analysis, design, and synthesis approaches, business management, bioethics, law and regulation, and globalization of biotechnology. It introduces the principles and applications of bioinformatics, biomechanics, biorobotics, biomaterials, nanotechnology, genetics, cellular, tissue and organ engineering, biomedical instrumentation and devices, biosensors, and medical imaging in biological systems. Stem cell technology and laboratory management introduces the current knowledge and highly specialized technical skills in the stem cell field and trains technical and managerial personnel in stem cell research and development. Our approach also includes team projects drawn from biotechnology industries to focus on real-world problems and applications of biological sciences, internships and to inculcate interpersonal as well as problem-solving skills using multiple perspectives.

Graduates from this program will develop analytical, managerial and interpersonal skills along with sophisticated expertise in biotechnology, bioinformatics, biomedical engineering or stem cell technology. They will be ready to make immediate contributions to scientific research and development, management in biotechnological, biomedical, biomedical engineering, and pharmaceutical industries, biotechnology law and regulations, governmental or environmental agencies, research institutes, consulting firms, research and clinical laboratories, private and public health organizations, or education.

\section*{Admission Requirements}
1. Applicants must have a BS/BA degree in Biology, Computer Science, Chemistry, Biochemistry, or Mathematics. Alternatively, applicants with a BA/BS degree in any field and equivalent work experiences in one of the above fields may be granted conditional admission, and they must fulfill all conditional requirements before they can be fully classified.
2. Applicants seeking admission to the professional MS in

Biotechnology and Bioinformatics program must be officially accepted into the Cl academic program.
3. Applicants must declare themselves as graduate students in the professional MS degree program in Biotechnology and Bioinformatics.
4. Applicants for the Stem Cell Technology and Laboratory Management Emphasis must commit to the stem cell technology internship requirement.
5. Applicants will be evaluated by the Program Admissions Committee which will consider the applicants in the context of the total applicant pool using our
biology techniques for applications in human and animal health, agriculture, environment, and specialty biochemical manufacturing. In this century, the major driving force for biotechnology will be the strategic use of the data derived from large-scale genome sequencing projects. Biomedical engineering is an interdisciplinary field, fusing molecular and cellular life sciences with contents in engineering analysis, design, and synthesis approaches, business management, bioethics, law and regulation, and globalization of biotechnology. It introduces the principles and applications of bioinformatics, biomechanics, biorobotics, biomaterials, nanotechnology, genetics, cellular, tissue and organ engineering, biomedical instrumentation and devices, biosensors, and medical imaging in biological systems. Stem cell technology and laboratory management introduces the current knowledge and highly specialized technical skills in the stem cell field and trains technical and managerial personnel in stem cell research and development. Our approach also includes team projects drawn from biotechnology industries to focus on real-world problems and applications of biological sciences, internships and to inculcate interpersonal as well as problem-solving skills using multiple perspectives.

Graduates from this program will develop analytical, managerial and interpersonal skills along with sophisticated expertise in biotechnology, bioinformatics, biomedical engineering or stem cell technology. They will be ready to make immediate contributions to scientific research and development, management in biotechnological, biomedical, biomedical engineering, and pharmaceutical industries, biotechnology law and regulations, governmental or environmental agencies, research institutes, consulting firms, research and clinical laboratories, private and public health organizations, or education.

\section*{Admission Requirements}
1. Applicants must have a BS/BA degree in Biology, Computer Science, Chemistry, Biochemistry, or Mathematics. Alternatively, applicants with a BA/BS degree in any field and equivalent work experiences in one of the above fields may be granted conditional admission, and they must fulfill all conditional requirements before they can be fully classified.
2. Applicants seeking admission to the professional MS in

Biotechnology and Bioinformatics program must be officially accepted into the Cl academic program.
3. Applicants must declare themselves as graduate students in the professional MS degree program in Biotechnology and Bioinformatics.
4. Applicants for the Stem Cell Technology and Laboratory Management Emphasis must commit to the stem cell technology internship requirement.
5. Applicants will be evaluated by the Program Admissions Committee which will consider the applicants in the context of the total applicant pool using our
general admission standards, including all academic work, GPA, test scores, relevant work experience and other factors that may have a bearing on the individual's potential for success. The following materials are required for our evaluation and admission process:
- Applicants must submit their transcript(s) from their undergraduate institution(s), Graduate Record Examinations (GRE) General Test scores or the Medical College Admission Test (MCAT) scores.
- Applicants who have received their undergraduate
degrees from a university where English is not the
language of instruction, or have studied fewer than two years at a university where instruction is in English, must submit their Test of English as a Foreign Language
(TOEFL) scores for evaluation.
- Applicants must submit a one page "Statement of Purpose" and two letters of recommendations from people able to judge the applicant's academic capacity.

\section*{Degree Requirements}
\begin{tabular}{cccc}
\multicolumn{4}{c}{ Common Core Courses - 12 units } \\
BINF & 500 & DNA \& Protein Sequence Analysis........ 3 \\
BIOL & 503 & Biotechnology Law and Regulation....... 3 \\
BIOL & 504 & Molecular Cell Biology...................... 3 \\
MGT & 471 & Project Management....................... 3
\end{tabular}

\section*{Biotechnology Emphasis - 22 units}
1. Required Courses - 15 units
\(\begin{array}{ll}\text { BINF } 514 & \begin{array}{l}\text { Statistical Methods in Computational } \\ \text { Biology .............................................. } 3\end{array}\end{array}\)
BIOL 502 Techniques in Genomics \& Proteomics 3
BIOL 505 Molecular Structure ................................ 4
BIOL 600 Team Project ......................................... 4
BIOL 601 Seminar in Biotechnology and Bioinformatics.................................. 1
2. Electives - \(\underline{7}\) Units

A minimum of two courses chosen from the following elective courses and/or from
the required courses for the other emphases of the program:
\(\begin{array}{lll}\text { BINF } 511 & \begin{array}{l}\text { Computational Genomics ...................... } 3\end{array} \\ \text { BIOL } 490\end{array}\)
general admission standards, including all academic work, GPA, test scores, relevant work experience and other factors that may have a bearing on the individual's potential for success. The following materials are required for our evaluation and admission process:
- Applicants must submit their transcript(s) from their undergraduate institution(s), Graduate Record Examinations (GRE) General Test scores or the Medical College Admission Test (MCAT) scores.
- Applicants who have received their undergraduate
degrees from a university where English is not the
language of instruction, or have studied fewer than two years at a university where instruction is in English, must submit their Test of English as a Foreign Language
(TOEFL) scores for evaluation.
- Applicants must submit a one page "Statement of Purpose" and two letters of recommendations from people able to judge the applicant's academic capacity.

\section*{Degree Requirements}

Common Core Courses - 12 units
BINF 500 DNA \& Protein Sequence Analysis ....... 3
BIOL 503 Biotechnology Law and Regulation....... 3
BIOL 504 Molecular Cell Biology........................... 3
MGT 471 Project Management.............................. 3

\section*{Biotechnology Emphasis - 22 units}
1. Required Courses - 15 units
\(\begin{array}{ll}\text { BINF } 514 & \begin{array}{l}\text { Statistical Methods in Computational } \\ \text { Biology............................................... } 3\end{array}\end{array}\)
BIOL 502 Techniques in Genomics \& Proteomics 3
BIOL 505 Molecular Structure ............................... 4
BIOL 600 Team Project.......................................... 4
BIOL 601 Seminar in Biotechnology and Bioinformatics .. 1
2. Electives - \(\underline{7}\) Units

A minimum of two courses chosen from the following elective courses and/or from
the required courses for the other emphases of the program:
BINF 511 Computational Genomics....................... 3
BIOL 590 Special Topics in Biotechnology............ 3

\begin{tabular}{lcl}
\hline BIOL & 510 & \begin{tabular}{l} 
Tissue Culture Techniques and \\
Stem Cell Technology......................... 3
\end{tabular} \\
BIOL & 511 & \begin{tabular}{l} 
Advanced Stem Cell Technology .......... 3
\end{tabular} \\
BIOL & 512 & \begin{tabular}{l} 
Advanced Topics in \\
Regenerative Medicine ........................... 1
\end{tabular} \\
BIOL & 513 & \begin{tabular}{l} 
Cell Culture Facility Management ....... 3 \\
Stem Cell Technology \\
Internship (1.5 units X 4)........................ 6
\end{tabular}
\end{tabular}
*BIOL 602 course is offered quarterly at 1.5 units, which is repeatable for a total of \(\underline{6}\) units for a year long project.

\section*{2. Electives 3-4 units}

A minimum of one course chosen from the elective courses for the Biotechnology Emphasis and/or from the required courses for the other emphases of the program.

\section*{Graduate Writing Assessment Requirement}

Writing proficiency prior to the awarding of the degree is demonstrated by successful completion of BIOL 504 with a grade of \(B\) or higher.

\section*{The Master of Science Degree in Biotechnology \& Masters of Business Administration (72 units)* (Dual Degree)}
*Assumes that at least one set of the Foundation Courses listed below has been completed in a business or science undergraduate degree program.

\section*{Program Description}

The Master of Science in Biotechnology \& Master of Business Administration is a dual professional degree program designed to meet the needs of biotechnology industry and related public and private agencies and organizations. The program combines rigorous scientific training in biotechnology with graduate course work and experience in business management and regulatory affairs. The program includes the foundation courses for the dual degree program, a set of graduate level core courses in both biotechnology and business, and several elective courses.

Our approach includes team projects drawn from biotechnology industries to focus
\begin{tabular}{lll} 
BIOL 510 & \begin{tabular}{l} 
Tissue Culture Techniques and \\
Stem Cell Technology.......................... 3
\end{tabular} \\
BIOL 511 & \begin{tabular}{l} 
Advanced Stem Cell Technology ........ 3
\end{tabular} \\
BIOL 512 & \begin{tabular}{l} 
Advanced Topics in \\
Regenerative Medicine .......................... 1
\end{tabular} \\
BIOL 513 & \begin{tabular}{l} 
Cell Culture Facility Management ........ 3
\end{tabular} \\
BIOL 602 & \begin{tabular}{l} 
Stem Cell Technology \\
Internship (1.5 units X 4)...................... 6
\end{tabular} \\
*BIOL 602 course is offered quarterly at 1.5 units, which is repeatable for a total of \\
6 units for a year long project.
\end{tabular}

\section*{Graduate Writing Assessment Requirement}

Writing proficiency prior to the awarding of the degree is demonstrated by successful completion of BIOL 504 with a grade of \(B\) or higher.

\section*{The Master of Science Degree in \\ Biotechnology \& Masters of Business Administration (72 units)* (Dual Degree)}
*Assumes that at least one set of the Foundation Courses listed below has been completed in a business or science undergraduate degree program.

\section*{Program Description}

The Master of Science in Biotechnology \& Master of Business Administration is a dual professional degree program designed to meet the needs of biotechnology industry and related public and private agencies and organizations. The program combines rigorous scientific training in biotechnology with graduate course work and experience in business management and regulatory affairs. The program includes the foundation courses for the dual degree program, a set of graduate level core courses in both biotechnology and business, and several elective courses.

Our approach includes team projects drawn from biotechnology industries to focus
on real-world problems and applications of biological sciences and business. We approach interpersonal skills and problem-solving skills from multiple perspectives.

\section*{Admission Requirements}
1. Applicants must have a BA/BS. Degree in Biology, Chemistry, Biochemistry, or Business/ Economics related discipline. Alternatively, applicants with a BA/BS degree in any field and equivalent work experiences in one of the above fields may be admitted and must fulfill the foundation course requirements before taking the core courses and electives in the degree program.
2. Applicants seeking admission to the dual degree program must be officially accepted into Cl as graduate students.
3. Applicants must declare themselves as graduate students in the dual degree program.
4. Applicants will be evaluated by the Program Admissions Committee which will consider the applicants in the context of the total applicant pool using our general admission standards, including all academic work, GPA, test scores, relevant work experience and other factors that may have a bearing on the individual's potential for success. The following materials are required for our evaluation and admission process:
- Applicants must submit their transcript(s) from their undergraduate institution(s) and Graduate Record Examinations (GRE) General Test scores
- Applicants who have received their undergraduate degrees from a university where English is not the language of instruction, or have studied fewer than two years at a university where instruction is in English, must
English as a Foreign Language (TOEFL) scores.
- Applicants must submit a one page "Statement of

Purpose" and two letters of recommendations from
people able
to judge the applicant's capacity for both
academic and professional success.

\section*{Degree Requirements}

\section*{Required Foundation Courses - 16 units}
1. Required Foundation Courses in Biology and Chemistry for Students without a B.S. in Biology or Chemistry 16 units
CHEM 110 Chemistry of Life. \(\qquad\) ... 4
BIOL 201 Principles of Cell and Molecular Biology4
BIOL 300 Cell Biology........................................... 4
BIOL 400 Molecular Biology .................................. 4
on real-world problems and applications of biological sciences and business. We approach interpersonal skills and problem-solving skills from multiple perspectives.

\section*{Admission Requirements}
1. Applicants must have a BA/BS. Degree in Biology, Chemistry, Biochemistry, or Business/ Economics related discipline. Alternatively, applicants with a BA/BS degree in any field and equivalent work experiences in one of the above fields may be admitted and must fulfill the foundation course requirements before taking the core courses and electives in the degree program.
2. Applicants seeking admission to the dual degree program must be officially accepted into Cl as graduate students.
3. Applicants must declare themselves as graduate students in the dual degree program.
4. Applicants will be evaluated by the Program Admissions Committee which will consider the applicants in the context of the total applicant pool using our general admission standards, including all academic work, GPA, test scores, relevant work experience and other factors that may have a bearing on the individual's potential for success. The following materials are required for our evaluation and admission process:
- Applicants must submit their transcript(s) from their undergraduate institution(s) and Graduate Record Examinations (GRE) General Test scores.
- Applicants who have received their undergraduate degrees from a university where English is not the language of instruction, or have studied fewer than two years at a university where instruction is in English, must submit their Test of
English as a Foreign Language (TOEFL) scores.
- Applicants must submit a one page "Statement of

Purpose" and two letters of recommendations from people able
to judge the applicant's capacity for both
academic and professional success.

\section*{Degree Requirements}

\section*{Required Foundation Courses - 16 units}
1. Required Foundation Courses in Biology and Chemistry
for Students without a B.S. in Biology or Chemistry 16 units
CHEM 110 Chemistry of Life. \(\qquad\)
BIOL 201 Principles of Cell and Molecular Biology4
BIOL 300 Cell Biology ........................................... 4
BIOL 400 Molecular Biology .................................. 4


\section*{BIOL 503 Biotechnology Law and Regulation....... 3}

Graduate Writing Assessment Requirement
Writing proficiency prior to awarding of the degree is demonstrated by successful completion of BIOL 504 or
BUS 520 with a grade of \(B\) or higher.

\section*{Minor in Biology (21 units)}

\section*{Lower Division Requirements-8units \\ BIOL 200* Principles of Organismal and Population Biology, GE B2 ................... 4 \\ BIOL 201 Principles of Cell and Molecular \\ Biology, GE B2 \\ ....................................... 4}

\section*{Upper Division Requirements-13 units}
1. Biology - 8 units

BIOL 300 Cell Biology ........................................... 4
BIOL 302 Genetics............................................. 4

\section*{2. Biology Electives - 5 units}

A minimum of 5 units of \(300-400\) level biology courses, with no more than one course selected from BIOL 331-345.

\section*{Clinical Training Certificate Program in Glinital Laboratory Science-(16 units)}

\section*{Program Description:}

The Clinical Training Certificate Program in Clinical Laboratory Science consists of twelve-months learning of the specialties of each individual department in a clinical laboratory at a partner hospital, including blood bank, chemistry, urinalysis, flow eytometry, immunohistochemistry, hematology, microbiology and parasitology. Emphasis will be placed on the importance of safety, quality control and quality assurance.
Prerequisites: BS in Biology with an Emphasis in Clinical Laboratory Science or equivalent educational credential.

Gertificate Requirements-16 units:

BIOL 503 Biotechnology Law and Regulation....... 3

\section*{Graduate Writing Assessment Requirement}

Writing proficiency prior to awarding of the degree is demonstrated by successful completion of BIOL 504 or
BUS 520 with a grade of \(B\) or higher.

\section*{CLS 500 Clinical Training Certificate Program}

Part 1-8 units
-Orientation-1 week
General Laboratory Techniques - 3 weeks
Blood Bank - 5 -week rotation
Chemistry - 15-week rotation
Flow Cytometry and Immunohistochemistry - 2 weeks

\section*{CLS 501 Clinical Training Certificate Program}

Part II-8 units
-Urinalysis - 3 weeks
Hematology/Coagulation - 8-week rotation
-Microbiology -9-week rotation
- Parasitology - 3 weoks

Enhancement Sites-1 week
Central Processing and Phlebotomy - ongoing
-Review-2-week rotation

\section*{Stem Cell Technology Certificate Program (non-credit)}

\section*{Program Description:}

The Stem Cell Technology Certificate Program focuses on modern aspects of stem cell technology, applications in regenerative medicine, and the techniques of stem cell science, including cell culture and characterization and maintenance of pluripotent human embryonic and adult stem cell lines.
Upon completion of the program, the students are
expected to:
- Describe the specific culture requirements and characteristics of various stem cell lines;
- Demonstrate ability to routinely culture and maintain human pluripotent and multipotent stem cell lines
- Apply knowledge and skills in stem cell science in research projects.

Prerequisite: BS in Biology, Chemistry, Biochemistry or related discipline.

\section*{Certificate Requirements:}

\section*{Advanced Topics in Regenerative Medicine - \(\mathbf{1 5} \mathbf{~ h r}\)}

A seminar series involving presentations and discussions of current knowledge of embryonic and adult stem cells and factors that regulate their growth and development. Emphasizes how advancements in cell and molecular biology and tissue engineering can be applied to the use of stem cells in regenerative medicine.

\title{
Stem Cell Technology Certificate Program (non-credit)
}

\section*{Program Description:}

The Stem Cell Technology Certificate Program focuses on modern aspects of stem cell technology, applications in regenerative medicine, and the techniques of stem cell science, including cell culture and characterization and maintenance of pluripotent human embryonic and adult stem cell lines.
Upon completion of the program, the students are
expected to:
- Describe the specific culture requirements and characteristics of various stem cell lines;
- Demonstrate ability to routinely culture and maintain human pluripotent and multipotent stem cell lines
- Apply knowledge and skills in stem cell science in research projects.

Prerequisite: BS in Biology, Chemistry, Biochemistry or related discipline.

\section*{Certificate Requirements:}

Advanced Topics in Regenerative Medicine - 15 hr
A seminar series involving presentations and discussions of current knowledge of embryonic and adult stem cells and factors that regulate their growth and development. Emphasizes how advancements in cell and molecular biology and tissue engineering can be applied to the use of stem cells in regenerative medicine.

\section*{Discusses social and ethical impacts of stem cell technology.}

\section*{Advanced Stem Cell Technology - 45 hr}

A laboratory intensive course focused on the technical aspects of human embryonic stem cell technology. Develops specific technical skills to successfully culture characterize and maintain pluripotent human embryonic stem cells.

Upon successful completion of the required courses, students will be granted a Certificate of Completion by the Extended University.

Discusses social and ethical impacts of stem cell technology.

\section*{Advanced Stem Cell Technology - 45 hr}

A laboratory intensive course focused on the technical aspects of human embryonic stem cell technology. Develops specific technical skills to successfully culture characterize and maintain pluripotent human embryonic stem cells.

Upon successful completion of the required courses, students will be granted a Certificate of Completion by the Extended University.

Amy Denton
Proposer of Program Modification Date

\section*{APPROVAL SHEET}

Program: BIOLOGY
If your course has a General Education Component or involves Center affiliation, the Center will also sign off during the approval process.

Multiple Chair fields are available for cross-listed courses.
The Cl program review process includes a report from the respective department/program on its progress toward accessibility requirement compliance. By signing below, I acknowledge the importance of incorporating accessibility in course design.


Signature
Date
\begin{tabular}{|l|c|c|}
\hline Curriculum Chair & & \\
\hline \multicolumn{2}{|c|}{ Signature } & Date \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline AVP & & \\
\hline
\end{tabular}```

